Câu hỏi:

01/01/2026 3 Lưu

Một lớp học có \(30\) học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên \(3\) học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được \(2\)nam và \(1\)  nữ là \(\frac{{12}}{{29}}\). Tính số học sinh nữ của lớp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi số học sinh nữ của lớp là \(n\left( {n \in {\mathbb{N}^*},n \le 28} \right)\).

Suy ra số học sinh nam là \(30 - n\).

Không gian mẫu là chọn bất kì \(3\)  học sinh từ \(30\) học sinh.

Suy ra số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{30}^3\).

Gọi \(A\) là biến cố Chọn được \(2\) học sinh nam và \(1\)  học sinh nữ.

+ Chọn \(2\) nam trong \(30 - n\) nam, có \(C_{30 - n}^2\) cách.

+ Chọn \(1\) nữ trong \(n\) nữ, có \(C_n^1\) cách.

Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_{30 - n}^2.C_n^1\).

Do đó xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}}\) .

Theo giả thiết, ta có \(P\left( A \right) = \frac{{12}}{{29}} \Leftrightarrow \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}} = \frac{{12}}{{29}}\)

\( \Leftrightarrow \frac{{\left( {30 - n} \right)\left( {29 - n} \right)\left( {28 - n} \right)!.n}}{{2!.\left( {28 - n} \right)!}} = 1680\)

\( \Leftrightarrow \left( {30 - n} \right)\left( {29 - n} \right).n = 3360 \Leftrightarrow {n^3} - 59{n^2} + 870n - 3360 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n \approx 38,82\\n = 14\\n \approx 6,18\end{array} \right.\)

Vì \(n \in {\mathbb{N}^*} \Rightarrow n = 14\)

Vậy số học sinh nữ của lớp là \(14\) học sinh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Câu 2

A. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\,5} \right)\);         
B. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\, + \infty } \right)\);
C. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - \infty ;\, - 1} \right) \cup \left( {5; + \infty } \right)\);
D. \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ;\,5} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Dễ thấy \(f\left( x \right) =  - {x^2} + 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} =  - 1;\,{x_2} = 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho hàm số f(x) =  - x^2 + 4x + 5. Kết luận nào sau đây đúng? (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;5} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {5; + \infty } \right)\).

Vậy đáp án đúng là A.

Câu 3

A. \({x^2} + 2{y^2} - 4x - 8y + 1 = 0\);   
B. \({x^2} + {y^2} - 4x + 6y - 12 = 0\);
C. \({x^2} + {y^2} - 2x - 8y + 20 = 0\);  
D. \(4{x^2} + {y^2} - 10x - 6y - 2 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = {x^2} - 4x - 1\);           
B. \(y = {x^2} - 4x + 3\);
C. \(y =  - {x^2} + 4x - 1\);  
D. \(y =  - {x^2} + 4x + 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({d_1}\) và \({d_2}\) cắt nhau và không vuông góc với nhau;         
B. \({d_1}\) và \({d_2}\) song song với nhau;
C. \({d_1}\) và \({d_2}\) trùng nhau;
D. \({d_1}\) và \({d_2}\) vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[I\left( { - 2; - 3} \right)\];   
B. \[I\left( {2;3} \right)\];    
C. \[I\left( {4;6} \right)\]; 
D. \[I\left( { - 4; - 6} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP