Câu hỏi:

01/01/2026 1 Lưu

Bất phương trình nào dưới đây không là bất phương trình bậc hai một ẩn?

A. \({x^2} - 5x + 3 > 0\);                                 

B. \({x^2} + 3x - 5 > 0\);

C. \(2{x^4} + {x^2} - 10 > 0\);                          
D. \({x^2} + 2x - 1 \ge 2{x^2} + 2x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(2{x^4} + {x^2} - 10 > 0\) không phải bất phương trình bậc hai một ẩn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty ;2022} \right)\);                                                   

B. \(\left( {0;2022} \right)\);                    

C. \(\left( {2022; + \infty } \right)\);                                                   
D. \(\left( { - 2022;2022} \right)\).

Lời giải

Đáp án đúng là: B

Xét tam thức bậc hai \(f\left( x \right) = {x^2} - 2022x\) có: \(a = 1 > 0\) và \(b =  - 2022\) và \(c = 0\).

\(\Delta  = {\left( { - 2022} \right)^2} - 4.0.1 = {2022^2} > 0 \Rightarrow \sqrt \Delta   = 2022\)

Do đó, \(f\left( x \right) = {x^2} - 2022x = 0\) có hai nghiệm:

\({x_1} = \frac{{ - \left( { - 2022} \right) + 2022}}{{2.1}} = 2022\); \({x_2} = \frac{{ - \left( { - 2022} \right) - 2022}}{{2.1}} = 0\)

Như vậy, \(f\left( x \right)\) mang dấu âm trên khoảng \(\left( {0;2022} \right)\).

Lời giải

Do \(BH\) là đường cao nên \(AC \bot BH\) nên đường thẳng \(AC\)có một vectơ chỉ phương:

\(\overrightarrow {{u_{AC}}}  = \overrightarrow {{n_{BH}}}  = \left( {5; - 2} \right)\).

Do đó, một vectơ pháp tuyến của đường thẳng \(AC\) là: \(\overrightarrow {{n_{AC}}}  = \left( {2;5} \right)\).

Đường thẳng \(AC\) đi qua điểm \(A\left( { - 1;2} \right)\) có phương trình là:

\(2\left( {x + 1} \right) + 5\left( {y - 2} \right) = 0 \Leftrightarrow 2x + 5y - 8 = 0\).

Do đường thẳng \(AC\) giao đường thẳng \(CM\) tại \(C\) nên tọa độ của \(C\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}2x + 5y - 8 = 0\\5x + 7y - 20 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 0\end{array} \right. \Rightarrow C\left( {4;0} \right)\).

Đặt tọa độ điểm \(B\left( {a;b} \right)\). Do \(B \in BH\) nên \(5a - 2b - 4 = 0\)

Vì \(M\) là trung điểm của \(AB\) nên\(M\left( {\frac{{ - 1 + a}}{2};\frac{{2 + b}}{2}} \right) \in CM\)

\( \Leftrightarrow 5.\frac{{ - 1 + a}}{2} + 7.\frac{{2 + b}}{2} - 20 = 0 \Leftrightarrow 5a + 7b - 31 = 0\).

Tọa độ điểm \(B\) là nghiệm của hệ: \(\left\{ \begin{array}{l}5a - 2b - 4 = 0\\5a + 7b - 31 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right. \Leftrightarrow B\left( {2;3} \right)\).

Đường thẳng \(BC\) có vectơ chỉ phương là: \(\overrightarrow {BC}  = \left( {2; - 3} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {3;2} \right)\).

Phương trình đường thẳng \(BC\) là: \(3\left( {x - 2} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 3x + 2y - 12 = 0\).

Câu 4

A. \(f\left( x \right) = 4x - 5{x^2}\);                

B. \(f\left( x \right) = 2 + 3{x^2} - 2x\);

C. \(f\left( x \right) = {x^2} - 4\);                     
D. \(f\left( x \right) = {x^3} - 4{x^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f\left( x \right)\) luôn dương trên tập số thực; 

B. \(f\left( x \right)\) luôn âm trên tập số thực;

C. \(f\left( x \right)\) luôn không dương trên tập số thực;

D. \(f\left( x \right)\) luôn không âm trên tập số thực.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(a = 2021\), \(b = 2022\), \(c = 1\);             

B. \(a = 2021\), \(b = 2022\), \(c = 0\);

C. \(a = 2022\), \(b = 2021\), \(c = 0\);               
D. \(a = 2021\), \(b = 0\), \(c = 2022\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\,5} \right)\);        

B. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\, + \infty } \right)\);

C. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - \infty ;\, - 1} \right) \cup \left( {5; + \infty } \right)\);                     
D. \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ;\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP