Câu hỏi:

01/01/2026 34 Lưu

Một chi đoàn có \(3\)  đoàn viên nữ và một số đoàn viên nam. Cần lập một đội thanh niên tình nguyện gồm \(4\) người. Biết xác suất để trong \(4\) người được chọn có \(3\) nữ bằng \(\frac{2}{5}\) lần xác suất \(4\) người được chọn toàn nam. Hỏi chi đoàn đó có bao nhiêu đoàn viên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải.

Gọi số đoàn viên trong chi đoàn đó là \(n\left( {n \ge 7,\,n \in {\mathbb{N}^*}} \right)\).

Suy ra số đoàn viên nam trong chi đoàn là \(n - 3\).

Xác suất để lập đội thanh niên tình nguyện trong đó có \(3\) nữ là \(\frac{{C_3^3.C_{n - 3}^1}}{{C_n^4}}\).

Xác suất để lập đội thanh niên tình nguyện có toàn nam là \(\frac{{C_{n - 3}^4}}{{C_n^4}}\).

Theo giả thiết, ta có \(\frac{{C_3^3.C_{n - 3}^1}}{{C_n^4}} = \frac{2}{5}.\frac{{C_{n - 3}^4}}{{C_n^4}} \Leftrightarrow C_{n - 3}^1 = \frac{2}{5}C_{n - 3}^4\).

\[ \Leftrightarrow \left( {n - 3} \right) = \frac{2}{5}\frac{{\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)!}}{{4!\left( {n - 7} \right)!}} \Leftrightarrow \left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right) = 60\]

\( \Leftrightarrow {n^3} - 15{n^2} + 74n - 180 = 0\)

\( \Leftrightarrow \left( {n - 9} \right)\left( {{n^2} - 6n + 20} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}n - 9 = 0\\{n^2} - 6n + 20 = 0\end{array} \right. \Leftrightarrow n = 9\) (do \({n^2} - 6n + 20 = 0\) vô nghiệm).

Vậy cho đoàn có \(9\) đoàn viên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có :  \(C_n^0 + C_n^1 + C_n^2 = 11 \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = 11\,\,\left( {n \ge 2} \right)\)

\( \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)}}{2} = 11\) \( \Leftrightarrow \left[ \begin{array}{l}n = 4\\n =  - 5\end{array} \right.\) .

Do đó có \(n = 4\) thỏa mãn điều kiện.

Khi đó:

\({\left( {{x^3} + \frac{1}{{{x^2}}}} \right)^4} = {\left( {{x^3}} \right)^4} + 4.{\left( {{x^3}} \right)^3}.\frac{1}{{{x^2}}} + 6.{\left( {{x^3}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 4.{x^3}.{\left( {\frac{1}{{{x^2}}}} \right)^3} + {\left( {\frac{1}{{{x^2}}}} \right)^4}\)

\( = {x^{12}} + 4{x^7} + 6{x^2} + \frac{4}{{{x^2}}} + \frac{1}{{{x^8}}}\).

Vậy hệ số của \({x^2}\) trong khai triển là: \(6\).

Câu 2

A. \(x \in \left( { - \infty ;\, - 1} \right] \cup \left[ {5;\, + \infty } \right)\);  
B. \(x \in \left[ { - 1;\,5} \right]\);  
C. \(x \in \left[ { - 5;\,1} \right]\);  
D. \(x \in \left( { - 5;\,1} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Dễ thấy \(f\left( x \right) =  - {x^2} - 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} =  - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho tam thức bậc hai f(x) =  -x^2- 4x + 5. Khi đó f(x) > 0 khi (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).

Vậy đáp án đúng là D.

Câu 3

A. \[y =  - {x^2} + 2x - 3\]; 
B. \[y =  - {x^2} + 4x - 3\];
C. \[y = {x^2} - 4x + 3\];  
D. \[y = {x^2} - 2x - 3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = \left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\];
B. \(S = \mathbb{R}\); 
C. \[S = \left( {2; + \infty } \right)\]; 
D. \(S = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y - 4 = 0\);

B. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y + 4 = 0\);

C. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y + 4 = 0\);

D. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y - 4 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP