Cho hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 6t\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = 1 - 2t'\\y = 4 + 3t'\end{array} \right.\). Xác định vị trí tương đối giữa hai đường thẳng đã cho.
Cho hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 6t\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = 1 - 2t'\\y = 4 + 3t'\end{array} \right.\). Xác định vị trí tương đối giữa hai đường thẳng đã cho.
A. Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\)song song với nhau;
B. Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\)trùng nhau;
C. Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\)vuông góc;
Quảng cáo
Trả lời:
Đáp án đúng là: A
Đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 6t\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {4;\,\, - 6} \right)\).
Đường thẳng \({\Delta _2}:\left\{ \begin{array}{l}x = 1 - 2t'\\y = 4 + 3t'\end{array} \right.\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( { - 2;\,\,3} \right)\).
Nhận thấy \(\overrightarrow {{u_1}} = - 2\overrightarrow {{u_2}} \). Do đó hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) song song hoặc trùng nhau.
Lại có \(A\left( {1;\,\,4} \right)\) thuộc \({\Delta _2}\) nhưng không thuộc \({\Delta _1}\). Vậy \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 4x} = 2x - 2\] ta được
\( - {x^2} + 4x = 4{x^2} - 8x + 4\).
Sau khi thu gọn ta được \(5{x^2} - 12x + 4 = 0\). Từ đó tìm được \(x = 2\) hoặc \(x = \frac{2}{5}\).
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có \(x = 2\) thỏa mãn.
Vậy phương trình đã cho có 1 nghiệm là \(x = 2\).
Lời giải
Đặt phương trình chính tắc của elip có dạng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \(\left( {a > b > 0} \right)\).
Theo bài ra ta có: \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\).
Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).
Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là một đỉnh hình chữ nhật với \({x_C} > 0,{y_C} > 0\).
Do \(C \in \left( E \right)\)\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\).
Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).
Vậy diện tích trồng hoa lớn nhất có thể là \(48\,\,{{\rm{m}}^{\rm{2}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.