Câu hỏi:

17/01/2026 58 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( { - 1;\,1} \right),\,B\left( {0;\,\,2} \right)\). Viết phương trình đường thẳng \(d\) sao cho khoảng cách từ điểm \(A\) tới \(d\) bằng \(\sqrt 8 \), khoảng cách từ điểm \(B\) tới \(d\) bằng \(\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử đường thẳng \(d\) có dạng: \(y = ax + b\,\,\,\,{\rm{hay}}\,\,\,d:ax - y + b = 0\).

Ta có: \(d\left( {A,\,\,d} \right) = \frac{{\left| {a.\left( { - 1} \right) - 1 + b} \right|}}{{\sqrt {{a^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| { - a + b - 1} \right|}}{{\sqrt {{a^2} + 1} }} = \sqrt 8 \). Suy ra \(\frac{{\left| { - a + b - 1} \right|}}{{\sqrt 8 }} = \sqrt {{a^2} + 1} \).

Lại có: \(d\left( {B,\,\,d} \right) = \frac{{\left| {a.0 - 2 + b} \right|}}{{\sqrt {{a^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {b - 2} \right|}}{{\sqrt {{a^2} + 1} }} = \sqrt 2 \). Suy ra \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{a^2} + 1} \) (*).

Do đó, \(\frac{{\left| { - a + b - 1} \right|}}{{\sqrt 8 }} = \frac{{\left| {b - 2} \right|}}{{\sqrt 2 }}\)\( \Leftrightarrow \sqrt 2 \left| { - a + b - 1} \right| = \sqrt 8 \left| {b - 2} \right|\)

\( \Leftrightarrow \sqrt 2 \left| { - a + b - 1} \right| = 2\sqrt 2 \left| {b - 2} \right|\)

\( \Leftrightarrow \left| { - a + b - 1} \right| = 2\left| {b - 2} \right|\)

Trường hợp 1: \( - a + b - 1 = 2\left( {b - 2} \right) \Leftrightarrow a + b - 3 = 0\)\( \Leftrightarrow a = 3 - b\).

Thay \(a = 3 - b\) vào (*) ta được: \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{{\left( {3 - b} \right)}^2} + 1}  \Leftrightarrow \left| {b - 2} \right| = \sqrt 2 .\sqrt {{b^2} - 6b + 10} \)

\( \Rightarrow {b^2} - 4b + 4 = 2\left( {{b^2} - 6b + 10} \right)\)\( \Leftrightarrow {b^2} - 8b + 16 = 0 \Leftrightarrow b = 4\).

Suy ra \(a = 3 - 4 =  - 1\).

Vậy \(d: - x - y + 4 = 0\,\,\,{\rm{hay}}\,\,d:x + y - 4 = 0\).

Trường hợp 2: \( - a + b - 1 =  - 2\left( {b - 2} \right) \Leftrightarrow a - 3b + 5 = 0\)\( \Leftrightarrow a = 3b - 5\).

Thay \(a = 3b - 5\) vào (*) ta được: \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{{\left( {3b - 5} \right)}^2} + 1}  \Leftrightarrow \left| {b - 2} \right| = \sqrt 2 .\sqrt {9{b^2} - 30b + 26} \)

\( \Rightarrow {b^2} - 4b + 4 = 2\left( {9{b^2} - 30b + 26} \right)\)\( \Leftrightarrow 17{b^2} - 56b + 48 = 0\) (vô nghiệm).

Vậy phương trình đường thẳng \(d\) cần lập có dạng: \(x + y - 4 = 0\). 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 0;                              
B. 1;                          
C. 2;                           
D. 3.

Lời giải

Đáp án đúng là: B

Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 4x}  = 2x - 2\] ta được

\( - {x^2} + 4x = 4{x^2} - 8x + 4\).

Sau khi thu gọn ta được \(5{x^2} - 12x + 4 = 0\). Từ đó tìm được \(x = 2\) hoặc \(x = \frac{2}{5}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có \(x = 2\) thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là \(x = 2\).  

Lời giải

Đặt phương trình chính tắc của elip có dạng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \(\left( {a > b > 0} \right)\).

Theo bài ra ta có: \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\).

Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).

Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là một đỉnh hình chữ nhật  với \({x_C} > 0,{y_C} > 0\).

Do \(C \in \left( E \right)\)\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\).

Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).

Vậy diện tích trồng hoa lớn nhất có thể là \(48\,\,{{\rm{m}}^{\rm{2}}}\).

Câu 3

A. 2;                              
B. 4;                          
C. 1;                           
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {0;\,\,4} \right)\);                              
B. \(\left( {0;\,\,2} \right)\);  
C. \(\left( {2;\,\,0} \right)\);                     
D. \(\left( {4;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 3;                          
B. 4;                              
C. 5;                           
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ { - 1;\,\,7} \right]\);                           
B. \(\left[ { - 7;\,\,\,1} \right]\);       
C. \(\left( {0;\,\,6} \right)\);        
D. \(\left( { - 1;\,\,7} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP