Câu hỏi:

17/01/2026 37 Lưu

Phương trình \(\sqrt {5{x^2} - 28x - 29}  = \sqrt {{x^2} - 5x + 6} \) có tập nghiệm là

A. \(S = \left\{ { - \frac{5}{4}} \right\}\);

B. \(S = \left\{ { - \frac{5}{4};\,\,7} \right\}\);

C. \(S = \left\{ {\,7} \right\}\);
D. \(S = \left\{ {\frac{5}{4};\,\, - 7} \right\}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Bình phương hai vế của phương trình \(\sqrt {5{x^2} - 28x - 29}  = \sqrt {{x^2} - 5x + 6} \) ta được:

\(5{x^2} - 28x - 29 = {x^2} - 5x + 6\).

Thu gọn phương trình trên ta được: \(4{x^2} - 23x - 35 = 0\).

Từ đó suy ra \(x =  - \frac{5}{4}\) hoặc \(x = 7\).

Lần lượt thay các giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.

Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ { - \frac{5}{4};\,\,7} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điều kiện ta có

\({x^2} + {y^2} = \frac{{{{\left( {x + y} \right)}^2} + {{\left( {x - y} \right)}^2}}}{2} = 5 - {z^2} \Rightarrow {\left( {x + y} \right)^2} = 10 - 2{z^2} - {\left( {3 - z} \right)^2}\).

Do đó \({\left( {x + y} \right)^2} = 1 + 6z - 3{z^2}\).

Dễ thấy \(z \ne  - 2\). Ta có \(P.\left( {z + 2} \right) + 2 = x + y\).

Do đó \({\left[ {P.\left( {z + 2} \right) + 2} \right]^2} = 1 + 6z - 3{z^2}\)

\( \Leftrightarrow {\left( {z + 2} \right)^2}{P^2} + 4\left( {z + 2} \right)P + 4 = 1 + 6z - 3{z^2}\)

\( \Leftrightarrow \left( {{P^2} + 3} \right){z^2} + \left( {4{P^2} + 4P - 6} \right)z + 4{P^2} + 8P + 3 = 0\)

Phương trình ẩn \(z\) có nghiệm khi và chỉ khi \({\Delta '_z} \ge 0\)

\( \Leftrightarrow {\left( {2{P^2} + 2P - 3} \right)^2} - \left( {{P^2} + 3} \right)\left( {4{P^2} + 8P + 3} \right) \ge 0\)

\( \Leftrightarrow 4{P^4} + 4{P^2} + 9 + 8{P^3} - 12{P^2} - 12P - \left( {4{P^4} + 8{P^3} + 3{P^2} + 12{P^2} + 24P + 9} \right) \ge 0\)

\( \Leftrightarrow 23{P^2} + 36P \le 0\)

\( \Leftrightarrow  - \frac{{36}}{{23}} \le P \le 0\) (áp dụng định lí về dấu của tam thức bậc hai).

Ta có \(P = 0\) khi \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\]  và \(P =  - \frac{{36}}{{23}}\) khi \(x = \frac{{20}}{{31}},\,\,y =  - \frac{{66}}{{31}},\,\,z = \frac{7}{{31}}\).

Vậy giá trị lớn nhất của \(P\) là 0 tại \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\].

Câu 2

A. 0;                          
B. 1;                              
C. 2;                           
D. 4.

Lời giải

Đáp án đúng là: A

Bình phương hai vế của phương trình \(\sqrt {57x + 31{x^2} + 2}  = 5x + 4\) ta được:

\(57x + 31{x^2} + 2 = 25{x^2} + 40x + 16\).

Thu gọn phương trình trên ta được: \(6{x^2} + 17x - 14 = 0\).

Từ đó suy ra \(x =  - \frac{7}{2}\) hoặc \(x = \frac{2}{3}\).

Lần lượt thay các giá trị này vào phương trình đã cho ta thấy chỉ có \(x = \frac{2}{3}\) thỏa mãn.

Do đó, tập nghiệm của phương trình là \(S = \left\{ {\frac{2}{3}} \right\}\). Mà \(\frac{2}{3} \notin \mathbb{Z}\). Vậy phương trình đã cho không có nghiệm nguyên.

Câu 3

A. \[{d_1}\] và \({d_2}\) song song với nhau;   

B. \[{d_1}\] và \({d_2}\) trùng nhau;                

C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;        

D. \[{d_1}\] và \({d_2}\) vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[S = \left( { - \infty ;\,\, - 3} \right) \cup \left( {2;\,\, + \infty } \right)\]; 

B. \(S = \left[ { - 2;\,\,3} \right]\);        

C. \(S = \left[ { - 3;\,\,2} \right]\);                          
D. \(S = \left( { - 2;\,\,3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(\Delta  > 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\);          

B. Nếu \(\Delta  < 0\) thì \(f\left( x \right)\) luôn trái dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\);          

C. Nếu \(\Delta  < 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(b\) với mọi \(x \in \mathbb{R}\);                                                

D. Nếu \(\Delta  = 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{b}{{2a}}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\sqrt {61} \);        
B. \[\sqrt {17} \];           
C. \(\sqrt {41} \);        
D. \(2\sqrt 5 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP