A. \(x = 1;\,\,y = 13\);
B. \(x = 13;\,y = 1\);
Quảng cáo
Trả lời:
Đáp án đúng là: B
\(P\) là trung điểm của \(MN\) khi và chỉ khi \[\left\{ \begin{array}{l}\frac{{5 + x}}{2} = x - 4\\\frac{{3 + y}}{2} = y + 1\end{array} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l}5 + x = 2x - 8\\3 + y = 2y + 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 13\\y = 1\end{array} \right.\).
Vậy \(x = 13;\,\,y = 1\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ điều kiện ta có
\({x^2} + {y^2} = \frac{{{{\left( {x + y} \right)}^2} + {{\left( {x - y} \right)}^2}}}{2} = 5 - {z^2} \Rightarrow {\left( {x + y} \right)^2} = 10 - 2{z^2} - {\left( {3 - z} \right)^2}\).
Do đó \({\left( {x + y} \right)^2} = 1 + 6z - 3{z^2}\).
Dễ thấy \(z \ne - 2\). Ta có \(P.\left( {z + 2} \right) + 2 = x + y\).
Do đó \({\left[ {P.\left( {z + 2} \right) + 2} \right]^2} = 1 + 6z - 3{z^2}\)
\( \Leftrightarrow {\left( {z + 2} \right)^2}{P^2} + 4\left( {z + 2} \right)P + 4 = 1 + 6z - 3{z^2}\)
\( \Leftrightarrow \left( {{P^2} + 3} \right){z^2} + \left( {4{P^2} + 4P - 6} \right)z + 4{P^2} + 8P + 3 = 0\)
Phương trình ẩn \(z\) có nghiệm khi và chỉ khi \({\Delta '_z} \ge 0\)
\( \Leftrightarrow {\left( {2{P^2} + 2P - 3} \right)^2} - \left( {{P^2} + 3} \right)\left( {4{P^2} + 8P + 3} \right) \ge 0\)
\( \Leftrightarrow 4{P^4} + 4{P^2} + 9 + 8{P^3} - 12{P^2} - 12P - \left( {4{P^4} + 8{P^3} + 3{P^2} + 12{P^2} + 24P + 9} \right) \ge 0\)
\( \Leftrightarrow 23{P^2} + 36P \le 0\)
\( \Leftrightarrow - \frac{{36}}{{23}} \le P \le 0\) (áp dụng định lí về dấu của tam thức bậc hai).
Ta có \(P = 0\) khi \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\] và \(P = - \frac{{36}}{{23}}\) khi \(x = \frac{{20}}{{31}},\,\,y = - \frac{{66}}{{31}},\,\,z = \frac{7}{{31}}\).
Vậy giá trị lớn nhất của \(P\) là 0 tại \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\].
Câu 2
Lời giải
Đáp án đúng là: A
Bình phương hai vế của phương trình \(\sqrt {57x + 31{x^2} + 2} = 5x + 4\) ta được:
\(57x + 31{x^2} + 2 = 25{x^2} + 40x + 16\).
Thu gọn phương trình trên ta được: \(6{x^2} + 17x - 14 = 0\).
Từ đó suy ra \(x = - \frac{7}{2}\) hoặc \(x = \frac{2}{3}\).
Lần lượt thay các giá trị này vào phương trình đã cho ta thấy chỉ có \(x = \frac{2}{3}\) thỏa mãn.
Do đó, tập nghiệm của phương trình là \(S = \left\{ {\frac{2}{3}} \right\}\). Mà \(\frac{2}{3} \notin \mathbb{Z}\). Vậy phương trình đã cho không có nghiệm nguyên.
Câu 3
A. \[{d_1}\] và \({d_2}\) song song với nhau;
B. \[{d_1}\] và \({d_2}\) trùng nhau;
C. \[{d_1}\] và \({d_2}\) cắt nhau và không vuông góc với nhau;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[S = \left( { - \infty ;\,\, - 3} \right) \cup \left( {2;\,\, + \infty } \right)\];
B. \(S = \left[ { - 2;\,\,3} \right]\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Nếu \(\Delta > 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\);
B. Nếu \(\Delta < 0\) thì \(f\left( x \right)\) luôn trái dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\);
C. Nếu \(\Delta < 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(b\) với mọi \(x \in \mathbb{R}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( {3;\,\, - 1} \right)\) và \(B\left( { - 2;\,5} \right)\). Độ dài đoạn thẳng \(AB\) bằng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.