Một tổ có \(5\) học sinh nữ và \(6\) học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên một học sinh của tổ đó đi trực nhật?
Một tổ có \(5\) học sinh nữ và \(6\) học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên một học sinh của tổ đó đi trực nhật?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Chọn một học sinh của tổ đó đi trực nhật được chia thành hai phương án:
- Phương án 1: Chọn học sinh nữ có \(5\) cách chọn;
- Phương án 2: Chọn học sinh nam có \(6\) cách chọn;
Áp dụng quy tắc cộng ta có \(5 + 6 = 11\) cách.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Số phần tử của không gian mẫu \(n\left( \Omega \right) = 10!\).
Giả sử các ghế được đánh số từ \(1\) đến \(10\).
Để có cách xếp sao cho giữa \(2\) bạn nữ gần nhau có đúng \(2\) bạn nam thì các bạn nữ phải ngồi ở các ghế đánh số \(1;4;7;10\). Số cách xếp chỗ ngồi loại này là: \(6!.4!\) cách.
Ta tính số cách sắp xếp chỗ ngồi sao cho Huyền và Quang ngồi cạnh nhau
Nếu Huyền ngồi ở ghế \(1\) hoặc \(10\) thì có \(1\) cách xếp chỗ ngồi cho Quang. Nếu Huyền ngồi ở ghế \(4\) hoặc \(7\) thì có \(2\) cách xếp chỗ ngồi cho Quang.
Do đó, số cách xếp chỗ ngồi cho Quang và Huyền ngồi liền nhau là \(2 + 2.2 = 6\)
Suy ra, số cách xếp chỗ ngồi cho \(10\) người sao cho Quang và Huyền ngồi liền nhau là\(6.3!.5!\) cách
Gọi \(A\) là biến cố: “ Giữa \(2\) bạn nữ gần nhau có đúng \(2\) bạn nam, đồng thời Quang không ngồi cạnh Huyền”.
Số phần tử của biến cố \(A\) là: \(n\left( A \right) = 4!.6! - 6.5!.3! = 12\,960\).
Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{12960}}{{10!}} = \frac{1}{{280}}\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Tam thức \(f\left( x \right) = {x^2} - 4\) có \(a = 1 > 0\) và có hai nghiệm phân biệt là \({x_1} = 2;{x_2} = - 2\)
Ta có bảng xét dấu:
|
\(x\) |
\( - \infty \) |
\( - 2\) |
|
\(2\) |
\( + \infty \) |
|
\({x^2} - 4\) |
+ |
\(0\) |
– |
\(0\) |
+ |
Tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
