Câu hỏi:

05/01/2026 40 Lưu

Một lớp có \[15\] học sinh nam và \(20\) học sinh nữ. Có bao nhiêu cách chọn \(5\) bạn học sinh sao cho trong đó có đúng \(3\) học sinh nữ?

A. \(324\,\,632\);         
B. \(119\,\,700\);         
C. \(1\,\,245\);  
D. \(15\,\,504\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải.

Đáp án đúng là: B

Số cách chọn \(3\) học sinh nữ là: \(C_{20}^3 = 1\,\,140\) cách.

Số cách chọn \(2\) bạn học sinh nam là: \(C_{15}^2 = 105\) cách.

Số cách chọn \(5\) bạn thỏa mãn yêu cầu bài toán là: \(1\,\,140.105 = 119\,\,700\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Số phần tử của không gian mẫu \(n\left( \Omega  \right) = 10!\).

Giả sử các ghế được đánh số từ \(1\)  đến \(10\).

Để có cách xếp sao cho giữa \(2\) bạn nữ gần nhau có đúng \(2\) bạn nam thì các bạn nữ phải ngồi ở các ghế đánh số \(1;4;7;10\). Số cách xếp chỗ ngồi loại này là: \(6!.4!\) cách.

Ta tính số cách sắp xếp chỗ ngồi sao cho Huyền và Quang ngồi cạnh nhau

Nếu Huyền ngồi ở ghế \(1\) hoặc \(10\)  thì có \(1\) cách xếp chỗ ngồi cho Quang. Nếu Huyền ngồi ở ghế \(4\)  hoặc \(7\) thì có \(2\)  cách xếp chỗ ngồi cho Quang.

Do đó, số cách xếp chỗ ngồi cho Quang và Huyền ngồi liền nhau là \(2 + 2.2 = 6\)

Suy ra, số cách xếp chỗ ngồi cho \(10\) người sao cho Quang và Huyền ngồi liền nhau là\(6.3!.5!\) cách

Gọi \(A\) là biến cố: “ Giữa \(2\) bạn nữ gần nhau có đúng \(2\) bạn nam, đồng thời Quang không ngồi cạnh Huyền”.

Số phần tử của biến cố \(A\) là: \(n\left( A \right) = 4!.6! - 6.5!.3! = 12\,960\).

Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{12960}}{{10!}} = \frac{1}{{280}}\).

Câu 2

A. \(S = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\);      
B. \(S = \left( { - 2;2} \right)\);
C. \(S = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\); 
D. \(S = \left( { - \infty ;0} \right) \cup \left( {4; + \infty } \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Tam thức \(f\left( x \right) = {x^2} - 4\) có \(a = 1 > 0\) và có hai nghiệm phân biệt là \({x_1} = 2;{x_2} =  - 2\)

Ta có bảng xét dấu:

\(x\)

\( - \infty \)

\( - 2\)

 

\(2\)

\( + \infty \)

\({x^2} - 4\)

           +

  \(0\)

         –

\(0\)

     +

Tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\).

Câu 3

A. \(\overrightarrow u  = \left( { - 4;3} \right)\);  
B. \(\overrightarrow u  = \left( {4;3} \right)\);  
C. \(\overrightarrow u  = \left( {3;4} \right)\);  
D. \(\overrightarrow u  = \left( {1; - 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x =- 1\);
B. \(x = 2\);
C. \(x = 1\);
D. \(x =- 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP