Câu hỏi:

06/01/2026 28 Lưu

Từ các chữ số \[0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,8\] lập được bao nhiêu số có ba chữ số đôi một khác nhau, chia hết cho \[2\] và \[3\]?

A. \[35\]; 
B. \[52\]; 
C. \[32\];  
D. \[48\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Số chia hết cho \[2\] và \[3\] là số chẵn và có tổng các chữ số của nó chia hết cho \[3\].

Gọi \[\overline {{a_1}{a_2}{a_3}} \]là số tự nhiên có ba chữ số đôi một khác nhau, chia hết cho \[2\] và \[3\] được lập từ các chữ số \(0;1;2;3;4;5;8\).

Trường hợp 1: \[{a_3} = 0\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {1;\,2} \right\}\], \[\left\{ {1;\,5} \right\}\], \[\left\{ {1;\,8} \right\}\], \[\left\{ {2;4} \right\}\], \[\left\{ {4;5} \right\}\], \[\left\{ {4;\,8} \right\}\].

Trường hợp này có \[6.2! = 12\] số.

Trường hợp 2: \[{a_3} = 2\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {1;\,0} \right\}\], \[\left\{ {4;\,0} \right\}\], \[\left\{ {1;\,3} \right\}\], \[\left\{ {3;4} \right\}\], \[\left\{ {5;8} \right\}\].

Trường hợp này có \[2 + 3.2! = 8\] số.

Trường hợp 3: \[{a_3} = 4\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {2;\,0} \right\}\], \[\left\{ {2;\,3} \right\}\], \[\left\{ {3;\,5} \right\}\], \[\left\{ {3;8} \right\}\].

Trường hợp này có \[1 + 3.2! = 7\] số.

Trường hợp 4: \[{a_3} = 8\]

Khi đó các chữ số \[{a_1},\,{a_2}\] được lập từ các tập \[\left\{ {0;\,1} \right\}\], \[\left\{ {0;\,4} \right\}\], \[\left\{ {1;\,3} \right\}\], \[\left\{ {2;5} \right\}\], \[\left\{ {3;4} \right\}\].

Trường hợp này có \[2 + 3.2! = 8\] số.

Vậy có tất cả \[12 + 8 + 7 + 8 = 35\] số cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có

\({\left( {\frac{1}{x} + {x^3}} \right)^4} = C_4^0{\left( {\frac{1}{x}} \right)^4}{\left( {{x^3}} \right)^0} + C_4^1{\left( {\frac{1}{x}} \right)^3}{\left( {{x^3}} \right)^1} + C_4^2{\left( {\frac{1}{x}} \right)^2}{\left( {{x^3}} \right)^2} + C_4^3{\left( {\frac{1}{x}} \right)^1}{\left( {{x^3}} \right)^3} + C_4^4{\left( {\frac{1}{x}} \right)^0}{\left( {{x^3}} \right)^4}\)\( = \frac{1}{{{x^4}}} + 4 + 6{x^4} + 4{x^8} + {x^{12}}\)

Vậy số hạng không chứa \[x\] trong khai triển \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là \[4\].

Câu 2

A. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y - 4 = 0\);
B. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
C. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
D. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y - 4 = 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(\Delta \parallel d \Rightarrow \Delta :3x - 4y + c = 4\)

Lấy điểm \(M\left( {1;1} \right) \in d\) khi đó \({d_{\left( {d;\Delta } \right)}} = {d_{\left( {M;\Delta } \right)}} = \frac{{\left| {3.1 - 4.1 + c} \right|}}{5} = 1\)

\( \Leftrightarrow \frac{{\left| {c - 1} \right|}}{5} = 1 \Leftrightarrow \left[ \begin{array}{l}c - 1 = 5\\c - 1 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 6\\c =  - 4\end{array} \right.\) .

Phương trình đường thẳng \(\Delta :3x - 4y + 6 = 0\) hoặc \(\Delta :3x - 4y - 4 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 40,3;    
B. 48;  
C. 49; 
D. 50.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{1}{{12}}\];    
B. \[\frac{1}{{18}}\];    
C. \[\frac{1}{{20}}\];    
D. \[\frac{1}{{36}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP