Câu hỏi:

06/01/2026 31 Lưu

II. PHẦN TỰ LUẬN

Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1;\, - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn có tâm \(I\)  và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Viết phương trình đường tròn (C). (ảnh 1)

Kẻ \(IH \bot d\). Khi đó

\(IH = d\left( {I;d} \right) = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 2\).

Diện tích tam giác \(IAB\) là: \({S_{IAB}} = \frac{1}{2}.AB.IH = \frac{1}{2}.AB.2 = AB\).

Mặt khác tam giác \(IAB\) có diện tích bằng \(4\) nên \(AB = 4\).

\( \Rightarrow AH = BH = \frac{{AB}}{2} = \frac{4}{2} = 2\).

Xét tam giác \(IAH\) vuông tại \(H\), có:

\(IA = \sqrt {I{H^2} + A{H^2}}  = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \).

Do đó bán kính đường tròn \(\left( C \right)\) là \(R = 2\sqrt 2 \).

Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có

\({\left( {\frac{1}{x} + {x^3}} \right)^4} = C_4^0{\left( {\frac{1}{x}} \right)^4}{\left( {{x^3}} \right)^0} + C_4^1{\left( {\frac{1}{x}} \right)^3}{\left( {{x^3}} \right)^1} + C_4^2{\left( {\frac{1}{x}} \right)^2}{\left( {{x^3}} \right)^2} + C_4^3{\left( {\frac{1}{x}} \right)^1}{\left( {{x^3}} \right)^3} + C_4^4{\left( {\frac{1}{x}} \right)^0}{\left( {{x^3}} \right)^4}\)\( = \frac{1}{{{x^4}}} + 4 + 6{x^4} + 4{x^8} + {x^{12}}\)

Vậy số hạng không chứa \[x\] trong khai triển \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là \[4\].

Câu 2

A. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y - 4 = 0\);
B. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
C. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
D. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y - 4 = 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(\Delta \parallel d \Rightarrow \Delta :3x - 4y + c = 4\)

Lấy điểm \(M\left( {1;1} \right) \in d\) khi đó \({d_{\left( {d;\Delta } \right)}} = {d_{\left( {M;\Delta } \right)}} = \frac{{\left| {3.1 - 4.1 + c} \right|}}{5} = 1\)

\( \Leftrightarrow \frac{{\left| {c - 1} \right|}}{5} = 1 \Leftrightarrow \left[ \begin{array}{l}c - 1 = 5\\c - 1 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 6\\c =  - 4\end{array} \right.\) .

Phương trình đường thẳng \(\Delta :3x - 4y + 6 = 0\) hoặc \(\Delta :3x - 4y - 4 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 40,3;    
B. 48;  
C. 49; 
D. 50.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{1}{{12}}\];    
B. \[\frac{1}{{18}}\];    
C. \[\frac{1}{{20}}\];    
D. \[\frac{1}{{36}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP