Câu hỏi:

06/01/2026 28 Lưu

Ba bạn \(A,B,C\) mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn \(\left[ {1;17} \right]\). Tính xác suất để ba số được viết ra có tổng chia hết cho \(3\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Số phần tử của không gian mẫu \(n\left( \Omega  \right) = {17^3} = 4913\).

Trong các số tự nhiên thuộc đoạn \(\left[ {1;17} \right]\) có \(5\) số chia hết cho \(3\) là \(3;6;9;12;15\), có \(6\)  số chia cho \(3\)  dư \(1\) là \(1;4;7;10;13;16\), có \(6\) số chia cho \(3\) dư \(2\) là \(3;5;8;11;14;17\).

Gọi \(A\) là biến cố “ba số được viết ra có tổng chia hết cho \(3\)” có các trường hợp sau:

Trường hợp 1:  Cả ba số viết ra đều chia hết cho \(3\). Trường hợp này có: \({5^3}\) cách viết.

Trường hợp 2: Cả ba số viết ra đều chia cho \(3\) dư \(1\). Trường hợp này có: \({6^3}\) cách viết.

Trường hợp 3: Cả ba số viết ra đều chia cho \(3\) dư \(2\). Trường hợp này có: \({6^3}\) cách viết.

Trường hợp 4: Trong ba số được viết ra có \(1\) số chia hết cho \(3\) , có \(1\) số chia cho \(3\)  dư \(1\), có \(1\) số chia cho \(3\) dư \(2\). Trong trường hợp này có: \(5.6.6.3!\) cách viết.

Vậy xác suất cần tìm là:

Số phần tử của biến cố \(A\) là: \({5^3} + {6^3} + {6^3} + 5.6.6.3! = 1637\).

Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{1637}}{{4913}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có

\({\left( {\frac{1}{x} + {x^3}} \right)^4} = C_4^0{\left( {\frac{1}{x}} \right)^4}{\left( {{x^3}} \right)^0} + C_4^1{\left( {\frac{1}{x}} \right)^3}{\left( {{x^3}} \right)^1} + C_4^2{\left( {\frac{1}{x}} \right)^2}{\left( {{x^3}} \right)^2} + C_4^3{\left( {\frac{1}{x}} \right)^1}{\left( {{x^3}} \right)^3} + C_4^4{\left( {\frac{1}{x}} \right)^0}{\left( {{x^3}} \right)^4}\)\( = \frac{1}{{{x^4}}} + 4 + 6{x^4} + 4{x^8} + {x^{12}}\)

Vậy số hạng không chứa \[x\] trong khai triển \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là \[4\].

Câu 2

A. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y - 4 = 0\);
B. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
C. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
D. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y - 4 = 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(\Delta \parallel d \Rightarrow \Delta :3x - 4y + c = 4\)

Lấy điểm \(M\left( {1;1} \right) \in d\) khi đó \({d_{\left( {d;\Delta } \right)}} = {d_{\left( {M;\Delta } \right)}} = \frac{{\left| {3.1 - 4.1 + c} \right|}}{5} = 1\)

\( \Leftrightarrow \frac{{\left| {c - 1} \right|}}{5} = 1 \Leftrightarrow \left[ \begin{array}{l}c - 1 = 5\\c - 1 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 6\\c =  - 4\end{array} \right.\) .

Phương trình đường thẳng \(\Delta :3x - 4y + 6 = 0\) hoặc \(\Delta :3x - 4y - 4 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 40,3;    
B. 48;  
C. 49; 
D. 50.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{1}{{12}}\];    
B. \[\frac{1}{{18}}\];    
C. \[\frac{1}{{20}}\];    
D. \[\frac{1}{{36}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP