Câu hỏi:

07/01/2026 36 Lưu

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai điểm \(A\left( { - 1;\,\,3} \right)\) và \(B\left( {9; - 7} \right)\). Phương trình đường trung trực của đoạn thẳng \(AB\) là

A. \(2x - y - 10 = 0\);
B. \(x - y - 6 = 0\); 
C. \(x - y + 4 = 0\);  
D. \(2x - y + 5 = 0\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Gọi \(I\) là trung điểm của \(AB\) nên tọa độ điểm \(I\) là \(\left( {4;\,\, - 2} \right)\).

Ta có: \(\overrightarrow {AB} \left( {10; - 10} \right) = 10\left( {1; - 1} \right)\)

Đường thẳng trung trực của đoạn thẳng \(AB\) nhận \(\left( {1; - 1} \right)\) làm vectơ pháp tuyến và đi qua điểm  \(I\left( {4;\,\, - 2} \right)\) nên có phương trình: \(x - 4 - \left( {y + 2} \right) = 0 \Leftrightarrow x - y - 6 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2!.3!\);  
B. \(2!\,\, + 3!\);  
C. \(5!\);  
D. \(5C5\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cách xếp \(5\) bạn gồm \(2\)nam và \(3\) nữ thành một hàng dọc là một hoán vị của \(5\) nên ta có: \(5!\) cách.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Số tập con có hai phần tử của tập \(A\) là: \(C_{10}^2\).

Do đó \(n\left( \Omega  \right) = C_{10}^2 = 45\).

Số các tập con của tập \(A\) có hai phần tử và luôn có phần tử \(9\) có: \(1.C_9^1 = 9\).

Gọi M là biến cố tập con có hai phần tử luôn có phần tử 9.

\( \Rightarrow n\left( M \right) = 9\)

\( \Rightarrow \frac{{n\left( M \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{45}} = \frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x + 2y = 9\);  
B. \( - 3x - 6y + 7 = 0\);
C. \(x - 2y - 19 = 0\); 
D. \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 - t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP