Câu hỏi:

07/01/2026 11 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hai đường thẳng \(d:2x - 2y + 3 = 0\) và \(d':x - y + 3 = 0\). Mệnh đề nào sau đây đúng?

A. Hai đường thẳng \(d\) và \(d'\) song song nhau;
B. Hai đường thẳng \(d\) và \(d'\) cắt nhau nhưng không vuông góc với nhau;
C. Hai đường thẳng \(d\) và \(d'\) trùng nhau;
D. Hai đường thẳng \(d\) và \(d'\) vuông góc với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Đường thẳng \(d:2x - 2y + 3 = 0\) có vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;2} \right) = 2\left( {1;1} \right)\).

Đường thẳng \(d':x - y + 3 = 0\) có vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {1; - 1} \right)\).

Ta có \(\frac{1}{1} \ne \frac{1}{{ - 1}}\) nên ta hai vectơ này không cùng phương.

Do đó hai đường thẳng \(d\) và \(d'\) cắt nhau.

Ta lại có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + 1.\left( { - 1} \right) = 0\) nên \(d\) và \(d'\) vuông góc với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2!.3!\);  
B. \(2!\,\, + 3!\);  
C. \(5!\);  
D. \(5C5\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cách xếp \(5\) bạn gồm \(2\)nam và \(3\) nữ thành một hàng dọc là một hoán vị của \(5\) nên ta có: \(5!\) cách.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Số tập con có hai phần tử của tập \(A\) là: \(C_{10}^2\).

Do đó \(n\left( \Omega  \right) = C_{10}^2 = 45\).

Số các tập con của tập \(A\) có hai phần tử và luôn có phần tử \(9\) có: \(1.C_9^1 = 9\).

Gọi M là biến cố tập con có hai phần tử luôn có phần tử 9.

\( \Rightarrow n\left( M \right) = 9\)

\( \Rightarrow \frac{{n\left( M \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{45}} = \frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x + 2y = 9\);  
B. \( - 3x - 6y + 7 = 0\);
C. \(x - 2y - 19 = 0\); 
D. \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 - t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP