Câu hỏi:

07/01/2026 4 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hai đường thẳng \(d:2x - 2y + 3 = 0\) và \(d':x - y + 3 = 0\). Mệnh đề nào sau đây đúng?

A. Hai đường thẳng \(d\) và \(d'\) song song nhau;
B. Hai đường thẳng \(d\) và \(d'\) cắt nhau nhưng không vuông góc với nhau;
C. Hai đường thẳng \(d\) và \(d'\) trùng nhau;
D. Hai đường thẳng \(d\) và \(d'\) vuông góc với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Đường thẳng \(d:2x - 2y + 3 = 0\) có vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;2} \right) = 2\left( {1;1} \right)\).

Đường thẳng \(d':x - y + 3 = 0\) có vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {1; - 1} \right)\).

Ta có \(\frac{1}{1} \ne \frac{1}{{ - 1}}\) nên ta hai vectơ này không cùng phương.

Do đó hai đường thẳng \(d\) và \(d'\) cắt nhau.

Ta lại có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + 1.\left( { - 1} \right) = 0\) nên \(d\) và \(d'\) vuông góc với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cách chọn ra \(5\) học sinh sao cho có đủ nam, nữ và số nam ít hơn số nữ gồm các phương án sau:

Phương án 1: Chọn \(1\) nam và \(4\) nữ có \(C_{15}^1.C_{20}^4\).

Phương án 2: Chọn \(2\) nam và \(3\) nữ có \(C_{15}^2.C_{20}^3\).

Áp dụng quy tắc cộng, có tất cả \(C_{15}^1.C_{20}^4 + C_{15}^2.C_{20}^3 = 192\,\,375\) cách.

Câu 2

A. \(d\left( {M;\Delta } \right) = \left| {a{x_0} + b{y_0} + c} \right|\);  
B. \(d\left( {M;\Delta } \right) = \frac{{a{x_0} + b{y_0} + c}}{{\sqrt {a + b} }}\);
C. \(d\left( {M;\Delta } \right) = \frac{{a{x_0} + b{y_0} + c}}{{\sqrt {{a^2} + {b^2}} }}\);   
D. \(d\left( {M;\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Công thức tính khoảng cách từ điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(\Delta :ax + by + c = 0\) là:

\(d\left( {M;\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Câu 3

A. \(x + 2y = 9\);  
B. \( - 3x - 6y + 7 = 0\);
C. \(x - 2y - 19 = 0\); 
D. \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 - t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP