a) Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có tâm \(I\left( { - 2;3} \right)\) và đi qua điểm \(A\left( {6;0} \right)\). Viết phương trình đường tròn \(\left( C \right)\).
b) Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1; - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
a) Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có tâm \(I\left( { - 2;3} \right)\) và đi qua điểm \(A\left( {6;0} \right)\). Viết phương trình đường tròn \(\left( C \right)\).
b) Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1; - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có: \(\overrightarrow {IA} \left( {8;\,\, - 3} \right) \Rightarrow IA = \sqrt {{8^2} + {{\left( { - 3} \right)}^2}} = \sqrt {73} \).
Suy ra bán kính đường tròn \(\left( C \right)\) là \(R = \sqrt {73} \).
Khi đó phương trình đường tròn \(\left( C \right)\) cần tìm là: \({\left( {x - 8} \right)^2} + {\left( {y + 3} \right)^2} = 73\).
b)
Từ điểm \(I\) kẻ \(IH\) vuông góc với đường thẳng \(d\left( {H \in d} \right)\).
Khi đó \(H\) là trung điểm của \(AB\).
Khoảng cách từ điểm \(I\) đến đường thẳng \(d\) là: \(d\left( {I;d} \right) = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\).
Diện tích tam giác \(IAB\) bằng \(4\) nên độ dài cạnh \(AB\) bằng: \(2.4:2 = 4\).
\( \Rightarrow AH = HB = \frac{1}{2}AB = 2\).
Xét tam giác \(AIH\), vuông tại \(H\) có: \(IA = \sqrt {I{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Khi đó phương trình đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(IA = 2\sqrt 2 \) là:
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Cách xếp \(5\) bạn gồm \(2\)nam và \(3\) nữ thành một hàng dọc là một hoán vị của \(5\) nên ta có: \(5!\) cách.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Số tập con có hai phần tử của tập \(A\) là: \(C_{10}^2\).
Do đó \(n\left( \Omega \right) = C_{10}^2 = 45\).
Số các tập con của tập \(A\) có hai phần tử và luôn có phần tử \(9\) có: \(1.C_9^1 = 9\).
Gọi M là biến cố tập con có hai phần tử luôn có phần tử 9.
\( \Rightarrow n\left( M \right) = 9\)
\( \Rightarrow \frac{{n\left( M \right)}}{{n\left( \Omega \right)}} = \frac{9}{{45}} = \frac{1}{5}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.