Câu hỏi:

07/01/2026 4 Lưu

Cho điểm \(M\) nằm trên Hypebol \(\left( H \right):\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\). Nếu hoành độ điểm \(M\) bằng \(8\) thì khoảng cách từ \(M\) đến hai tiêu cự của \(\left( H \right)\) bằng

A. \(8 + 4\sqrt 5 \) và \(8 - 4\sqrt 5 \); 
B.\(5\) và \(13\); 
B. \(8 + \sqrt 5 \) và \(8 - \sqrt 5 \);  
D. \(6\) và \(14\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D 

Với \(x = 8\) ta có \(\frac{{{8^2}}}{{16}} - \frac{{{y^2}}}{9} = 1 \Rightarrow \left[ \begin{array}{l}y =  - 3\sqrt 3 \\y = 3\sqrt 3 \end{array} \right.\).

Suy ra có hai điểm \(M\) thoả mãn là \({M_1}\left( {8;\,\,3\sqrt 3 } \right)\) và \[{M_2}\left( {8;\,\, - 3\sqrt 3 } \right)\].

Ta có \(a = 4;\,b = 3 \Rightarrow c = 5\). Tiêu điểm của \(\left( H \right)\) là \({F_1}\left( { - 5;\,0} \right)\) và \({F_2}\left( {5;\,0} \right)\).

Khi đó:

\(\overrightarrow {{M_1}{F_1}}  = \left( { - 13;\, - 3\sqrt 3 } \right) & \)và \(\overrightarrow {{M_2}{F_1}}  = \left( { - 13;\,3\sqrt 3 } \right)\);

\(\overrightarrow {{M_1}{F_2}}  = \left( { - 3;\, - 3\sqrt 3 } \right)\) và \(\overrightarrow {{M_2}{F_2}}  = \left( { - 3;\,3\sqrt 3 } \right)\).

Ta có \({M_1}{F_1} = {M_2}{F_1} = 14\) và \({M_1}{F_2} = {M_2}{F_2} = 6\) .

Vậy khoảng cách từ \(M\) đến hai tiêu cự bằng \(6\) và \(14\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), G (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Áp dụng định lí về dấu tam thức bậc hai ta có hàm số bậc hai \[y = a{x^2} + bx + c\] có \(a > 0\) và hai nghiệm \({x_1}\) và \({x_2}\) thỏa mãn \({x_1} < {x_2}\) có bảng xét dấu là:

Cho hàm số bậc hai y = a (x^2)+ bx + c có a > 0 và hai nghiệm x1 và x2 thỏa mãn x1 < x2. Hàm số đã cho có bảng xét dấu là (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[S = \left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\];   
B. \(S = \mathbb{R}\);
C. \[S = \left( {2; + \infty } \right)\];  
D. \(S = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP