Cho điểm \(M\) nằm trên Hypebol \(\left( H \right):\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\). Nếu hoành độ điểm \(M\) bằng \(8\) thì khoảng cách từ \(M\) đến hai tiêu cự của \(\left( H \right)\) bằng
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Với \(x = 8\) ta có \(\frac{{{8^2}}}{{16}} - \frac{{{y^2}}}{9} = 1 \Rightarrow \left[ \begin{array}{l}y = - 3\sqrt 3 \\y = 3\sqrt 3 \end{array} \right.\).
Suy ra có hai điểm \(M\) thoả mãn là \({M_1}\left( {8;\,\,3\sqrt 3 } \right)\) và \[{M_2}\left( {8;\,\, - 3\sqrt 3 } \right)\].
Ta có \(a = 4;\,b = 3 \Rightarrow c = 5\). Tiêu điểm của \(\left( H \right)\) là \({F_1}\left( { - 5;\,0} \right)\) và \({F_2}\left( {5;\,0} \right)\).
Khi đó:
\(\overrightarrow {{M_1}{F_1}} = \left( { - 13;\, - 3\sqrt 3 } \right) & \)và \(\overrightarrow {{M_2}{F_1}} = \left( { - 13;\,3\sqrt 3 } \right)\);
\(\overrightarrow {{M_1}{F_2}} = \left( { - 3;\, - 3\sqrt 3 } \right)\) và \(\overrightarrow {{M_2}{F_2}} = \left( { - 3;\,3\sqrt 3 } \right)\).
Ta có \({M_1}{F_1} = {M_2}{F_1} = 14\) và \({M_1}{F_2} = {M_2}{F_2} = 6\) .
Vậy khoảng cách từ \(M\) đến hai tiêu cự bằng \(6\) và \(14\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).
\( \Rightarrow \overrightarrow {HI} = \frac{3}{2}\overrightarrow {HG} \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).
Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).
Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)
\( \Rightarrow IM:2x - y + 1 = 0\)
\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y = - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).
Lại có: \(\overrightarrow {MA} = 3\overrightarrow {MG} \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\) .
Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).
Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Áp dụng định lí về dấu tam thức bậc hai ta có hàm số bậc hai \[y = a{x^2} + bx + c\] có \(a > 0\) và hai nghiệm \({x_1}\) và \({x_2}\) thỏa mãn \({x_1} < {x_2}\) có bảng xét dấu là:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



