Câu hỏi:

07/01/2026 6 Lưu

Một nhóm gồm \[6\] học sinh nam và \[7\] học sinh nữ. Hỏi có bao nhiêu cách chọn từ đó ra \[3\] học sinh tham gia văn nghệ sao cho luôn có ít nhất một học sinh nam.

A. \(245\); 
B. \(3480\);  
C. \(336\);
D. \(251\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Chọn ra \[3\] học sinh tham gia văn nghệ trong \[13\] học sinh tùy ý có \[C_{13}^3\] cách.

Chọn ra \[3\] học sinh tham gia văn nghệ trong \[7\] học sinh nữ có \[C_7^3\] cách.

Vậy chọn ra \[3\] học sinh tham gia văn nghệ sao cho luôn có ít nhất một học sinh nam có \[C_{13}^3 - C_7^3 = 251\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), G (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Câu 2

A. \[S = \left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\];   
B. \(S = \mathbb{R}\);
C. \[S = \left( {2; + \infty } \right)\];  
D. \(S = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta thức \(f\left( x \right) = {x^2} - 4x + 4\) có \(\Delta  = 0,\,a = 1 > 0\) nên \(f\left( x \right)\) có nghiệm duy nhất \(x = 2\)Do đó ta có bảng xét dấu \(f\left( x \right)\):

Tập nghiệm S của bất phương trình (x^2)- 4x + 4 lớn hơn hoặc bằng 0 là (ảnh 1)

Do đó tập nghiệm \(S\) của bất phương trình là: \(S = \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP