Câu hỏi:

07/01/2026 6 Lưu

Một nhóm gồm \(8\) nam và \(7\) nữ. Chọn ngẫu nhiên \(5\) bạn. Xác suất để trong \(5\) bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:

A. \(\frac{{60}}{{143}}\);  
B. \(\frac{{238}}{{429}}\);
C. \(\frac{{210}}{{429}}\); 
D. \(\frac{{82}}{{143}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Gọi A là biến cố: “5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ”

Số phân tử của không gian mẫu \(n\left( \Omega  \right) = C_{15}^5\).

Gọi A là biến cố: “5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ”

Trường hợp 1: chọn 5 bạn trong đó có \(4\) nam, \(1\)  nữ có: \(C_8^4.C_7^1\) cách

Trường hợp 2: cách chọn \(5\) bạn trong đó có \(3\) nam, \(2\) nữ có: \(C_8^3.C_7^2\) cách

Số phần tử của biến cố \(A\) là: \(n\left( A \right) = C_8^4.C_7^1 + C_8^3.C_7^2 = 1666\).

Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{1666}}{{C_{15}^5}} = \frac{{238}}{{429}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), G (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Áp dụng định lí về dấu tam thức bậc hai ta có hàm số bậc hai \[y = a{x^2} + bx + c\] có \(a > 0\) và hai nghiệm \({x_1}\) và \({x_2}\) thỏa mãn \({x_1} < {x_2}\) có bảng xét dấu là:

Cho hàm số bậc hai y = a (x^2)+ bx + c có a > 0 và hai nghiệm x1 và x2 thỏa mãn x1 < x2. Hàm số đã cho có bảng xét dấu là (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[S = \left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\];   
B. \(S = \mathbb{R}\);
C. \[S = \left( {2; + \infty } \right)\];  
D. \(S = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP