Số hạng không chứa \[x\] trong khai triển nhị thức Newton của \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là
Số hạng không chứa \[x\] trong khai triển nhị thức Newton của \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có
\({\left( {\frac{1}{x} + {x^3}} \right)^4} = C_4^0{\left( {\frac{1}{x}} \right)^4}{\left( {{x^3}} \right)^0} + C_4^1{\left( {\frac{1}{x}} \right)^3}{\left( {{x^3}} \right)^1} + C_4^2{\left( {\frac{1}{x}} \right)^2}{\left( {{x^3}} \right)^2} + C_4^3{\left( {\frac{1}{x}} \right)^1}{\left( {{x^3}} \right)^3} + C_4^4{\left( {\frac{1}{x}} \right)^0}{\left( {{x^3}} \right)^4}\)\( = \frac{1}{{{x^4}}} + 4 + 6{x^4} + 4{x^8} + {x^{12}}\)
Vậy số hạng không chứa \[x\] trong khai triển \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là \[4\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Dễ thấy \(f\left( x \right) = - {x^2} - 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} = - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).
Vậy đáp án đúng là D.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Điều kiện xác định của phương trình đã cho là \(2 - x \ge 0 \Leftrightarrow x \le 2\).
Bình phương hai vế của phương trình ta được
\({x^2} - 10x + m = {x^2} - 4x + 4\)
\( \Rightarrow 6x = m - 4\)
\( \Rightarrow x = \frac{{m - 4}}{6}\)
Để phương trình vô nghiệm thì \(\frac{{m - 4}}{6} > 2 \Leftrightarrow m - 4 > 12 \Leftrightarrow m > 16\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.