PHẦN TỰ LUẬN
Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1;\, - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn có tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
PHẦN TỰ LUẬN
Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1;\, - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn có tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Kẻ \(IH \bot d\). Khi đó
\(IH = d\left( {I;d} \right) = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 2\).
Diện tích tam giác \(IAB\) là: \({S_{IAB}} = \frac{1}{2}.AB.IH = \frac{1}{2}.AB.2 = AB\).
Mặt khác tam giác \(IAB\) có diện tích bằng \(4\) nên \(AB = 4\).
\( \Rightarrow AH = BH = \frac{{AB}}{2} = \frac{4}{2} = 2\).
Xét tam giác \(IAH\) vuông tại \(H\), có:
\(IA = \sqrt {I{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Do đó bán kính đường tròn \(\left( C \right)\) là \(R = 2\sqrt 2 \).
Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Dễ thấy \(f\left( x \right) = - {x^2} - 4x + 5\) có \(\Delta = 36 > 0,\,a = - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} = - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):
Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).
Vậy đáp án đúng là D.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Cách tìm số giao điểm của \[5\] đường tròn phân biệt được chia làm \(2\) công đoạn:
- Công đoạn thứ 1: Chọn \(2\) đường tròn trong \[5\] đường tròn có \(C_5^2\) cách.
- Công đoạn thứ 2: Ứng với \(2\) đường tròn có tối đa \(2\) giao điểm.
Vậy số giao điểm tối đa của \[5\] đường tròn phân biệt là \[2.C_5^2 = 20\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.