Câu hỏi:

08/01/2026 38 Lưu

PHẦN TỰ LUẬN

Trong mặt phẳng với hệ tọa độ \[Oxy\], cho đường thẳng \(d:3x - 4y - 1 = 0\) và điểm \(I\left( {1;\, - 2} \right)\). Gọi \(\left( C \right)\) là đường tròn có tâm \(I\)  và cắt đường thẳng \(d\) tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) có diện tích bằng \(4\). Viết phương trình đường tròn \(\left( C \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:3x - 4y - 1 = 0 và điểm I (1;- 2). Gọi (C) là đường tròn có tâm I và cắt đường thẳng d tại hai điểm A và B sao cho tam giác IAB có diện tích bằng 4. Viết phương trình đường tròn (C). (ảnh 1)

Kẻ \(IH \bot d\). Khi đó

\(IH = d\left( {I;d} \right) = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 2\).

Diện tích tam giác \(IAB\) là: \({S_{IAB}} = \frac{1}{2}.AB.IH = \frac{1}{2}.AB.2 = AB\).

Mặt khác tam giác \(IAB\) có diện tích bằng \(4\) nên \(AB = 4\).

\( \Rightarrow AH = BH = \frac{{AB}}{2} = \frac{4}{2} = 2\).

Xét tam giác \(IAH\) vuông tại \(H\), có:

\(IA = \sqrt {I{H^2} + A{H^2}}  = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \).

Do đó bán kính đường tròn \(\left( C \right)\) là \(R = 2\sqrt 2 \).

Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x \in \left( { - \infty ;\, - 1} \right] \cup \left[ {5;\, + \infty } \right)\);
B. \(x \in \left[ { - 1;\,5} \right]\);  
C. \(x \in \left[ { - 5;\,1} \right]\);  
D. \(x \in \left( { - 5;\,1} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Dễ thấy \(f\left( x \right) =  - {x^2} - 4x + 5\) có \(\Delta  = 36 > 0,\,a =  - 1 < 0\)và có hai nghiệm phân biệt \({x_1} = 1;\,{x_2} =  - 5\). Do đó ta có bảng xét dấu \(f\left( x \right)\):

Cho tam thức bậc hai f (x) = -(x^2) - 4x +5. Khi đó f (x) > 0 khi (ảnh 1)

Suy ra \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 5;1} \right)\) và \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ; - 5} \right) \cup \left( {1; + \infty } \right)\).

Vậy đáp án đúng là D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Điều kiện xác định của phương trình đã cho là \(2 - x \ge 0 \Leftrightarrow x \le 2\).

Bình phương hai vế của phương trình ta được

\({x^2} - 10x + m = {x^2} - 4x + 4\)

\( \Rightarrow 6x = m - 4\)

\( \Rightarrow x = \frac{{m - 4}}{6}\)

Để phương trình vô nghiệm thì \(\frac{{m - 4}}{6} > 2 \Leftrightarrow m - 4 > 12 \Leftrightarrow m > 16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[10\];  
B. \[20\]; 
C. \[18\];   
D. \[22\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP