Trong vườn hoa có \(11\) bông hồng trắng, \(8\) bông hồng đỏ. Bạn Lan làm một bó hoa gồm \(10\) bông trong đó có đúng \(3\) bông đỏ để tặng mẹ. Hỏi bạn Lan có thể làm được bao nhiêu bó hoa như vậy?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Số cách chọn \(10\) bông trong đó có đúng \(3\) bông đỏ là: \(C_8^3.C_{11}^7 = 18\,\,480\).
Vậy bạn Lan có thể làm được \[18\,\,480\] bó hoa như vậy.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \[I\left( { - 2t + 3;\,t} \right) \in d\] là tâm của đường tròn \[\left( C \right)\].
Theo giả thiết, ta có:
\[d\left( {I,\,\Delta } \right) = R \Leftrightarrow \frac{{\left| { - 2t + 3 + 3t - 5} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \frac{{\left| {t - 2} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 2\end{array} \right.\]
+) Với \[t = 6 \Rightarrow I\left( { - 9;\,6} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x + 9} \right)^2} + {\left( {y - 6} \right)^2} = \frac{8}{5}\].
+) Với \[t = - 2 \Rightarrow I\left( {7;\, - 2} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x - 7} \right)^2} + {\left( {y + 2} \right)^2} = \frac{8}{5}\].
Lời giải
Hướng dẫn giải
Gọi số có 3 chữ số khác nhau là \[\overline {abc} \,\left( {a \ne 0} \right)\].
Chọn \[a\] có \[6\] cách chọn (vì \[a\] chọn tuý ý một trong các số từ \[1\] đến \[6\]).
Chọn \[b\] có \[5\] cách chọn (vì \[b \ne a\] nên \[b\] có thể chọn một trong các số từ \[1\] đến \[6\] nhưng không được chọn số mà \[a\] đã chọn).
Chọn \[c\] có \[4\] cách chọn (vì \[c \ne a,\,c \ne b\] nên \[c\] có thể chọn một trong các số từ \[1\] đến \[6\] nhưng không được chọn số mà \[a,\,b\] đã chọn).
Áp dụng quy tắc nhân, ta có \[6.5.4 = 120\] số có ba chữ số khác nhau được lập từ các số \[1;\,2;\,3;\,4;\,5;\,6\].
Vậy số phần tử của không gian mẫu là: \[n\left( \Omega \right) = 120\].
Gọi \[A\] là biến cố: “chọn được số tự nhiên có ba chữ số khác nhau sao cho số đó nhỏ hơn \[323\]”.
TH1: \(a = 3\), khi đó:
Nếu \(b < 2\) thì \(b \in \left\{ {0;1} \right\}\) hay \(b\) có \(2\) cách; \(c\) có \(5\) cách.
Do đó có: \(1.2.5 = 10\) số.
Nếu \(b = 2\) thì \(b\) có \(1\) cách; \(c\) phải nhỏ hơn \(3\) và khác \(b\) nên \(c \in \left\{ {0;1} \right\}\) hay \(c\) có \(2\) cách.
Do đó có: \(1.1.2 = 2\) số.
TH2: \(a < 3\) nên \(a \in \left\{ {1;2} \right\}\) hay \(a\) có hai cách chọn, khi đó:
\(b\) có \(6\) cách chọn, \(c\) có \(5\) cách chọn.
Do đó có \(2.6.5 = 60\) số.
Vậy có \(10 + 2 + 60 = 72\) số.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



