Cho Elip \(\left( E \right):\frac{{{x^2}}}{{144}} + \frac{{{y^2}}}{2} = 1\) có hai tiêu điểm \({F_1},{F_2}\). Điểm \(M\) thuộc Elip \(\left( E \right)\) khi
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có \(\left( E \right):\frac{{{x^2}}}{{144}} + \frac{{{y^2}}}{2} = 1 \Leftrightarrow \frac{{{x^2}}}{{{{12}^2}}} + \frac{{{y^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}} = 1\)
\( \Rightarrow a = 12,b = \sqrt 2 \)
\( \Rightarrow 2a = 24\).
Điểm \(M\) thuộc Elip \(\left( E \right)\) khi \(M{F_1} + M{F_2} = 2a = 2.12 = 24\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có: \(\overrightarrow {AB} \left( {6;\,\,4} \right) = 2\left( {3;2} \right)\)
Khi đó \(\left( {3;\,\,2} \right)\) là một vectơ chỉ phương đường thẳng \(\left( \Delta \right)\) hay ta có \(\left( {2; - 3} \right)\) là một vectơ pháp tuyến của đường thẳng \(\left( \Delta \right)\).
Vậy phương trình đường thẳng \(\left( \Delta \right)\) là:
\(2\left( {x + 2} \right) - 3\left( {y - 1} \right) = 0 \Leftrightarrow 2x - 3y + 7 = 0\).
b) Vectơ pháp tuyến của đường thẳng \(\left( d \right):3x - y + 2 = 0\) là \(\left( {3; - 1} \right)\).
Vì đường thẳng \(\left( \Delta \right)\) song song với đường thẳng \(\left( d \right)\) nên \(\left( {3; - 1} \right)\) cũng là một vectơ pháp tuyến của \(\left( \Delta \right)\).
Vì vậy phương trình đường thẳng \(\left( d \right)\)là:
\(3\left( {x + 2} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow 3x - y + 7 = 0\).
c) Gọi \(d'\) là đường thẳng vuông góc với đường thẳng \(AB\) tại điểm \(A\).
Một vectơ pháp tuyến của \(\left( d \right)\) là \(\left( {1;\,\, - 4} \right)\) nên vectơ chỉ phương là \(\left( {4;1} \right)\).
Vì \(d' \bot d\) nên \(\left( {d'} \right)\) nhận \(\left( {4;1} \right)\) làm một vectơ pháp tuyến, nên phương trình \(\left( {d'} \right)\) là:
\(4\left( {x + 2} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow 4x - y + 9 = 0\).
Tọa độ điểm \(M\) cần tìm là giao điểm của đường thẳng \(\left( d \right)\) và \(\left( {d'} \right)\) nên ta có:
\(\left\{ \begin{array}{l}4x - y + 9 = 0\\x - 4y + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{{31}}{{15}}\\y = - \frac{{11}}{{15}}\end{array} \right. \Rightarrow M\left( { - \frac{{31}}{{15}}; - \frac{{11}}{{15}}} \right)\).
Lời giải
Hướng dẫn giải
a) Để tạo đề kiểm tra gồm \(5\) câu hỏi sao cho có đủ ba loại câu hỏi và có đúng \(2\) câu hỏi dễ sẽ có các phương án sau:
- Phương án 1: Đề gồm \(2\) câu hỏi dễ, \(2\) câu trung bình và \(1\) câu khó có \(C_{10}^2.C_6^2.C_4^1 = 2700\) đề.
- Phương án 2: Đề gồm \(2\) câu hỏi dễ, \(3\) câu trung bình có \(C_{10}^2.C_6^3 = 900\) đề.
- Phương án 3: Đề gồm \(2\) câu hỏi dễ, \(1\) câu trung bình và \(2\) câu khó có \(C_{10}^2.C_6^1.C_4^2 = 1620\) đề.
Áp dụng quy tắc cộng có \(2700 + 900 + 1620 = 5220\) đề.
b) Ta có: \(T = C_4^0 + 2C_4^1 + 4C_4^2 + 8C_4^3 + 16C_4^4\)
\( = C_4^0{.1^4} + C_4^1{.1^3}.2 + C_4^2{.1.2^2} + C_4^3{.1.2^3} + C_4^4{.1.2^4}\)
\( = {\left( {1 + 2} \right)^4}\)
\( = {3^4}\)
\( = 81\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.