Câu hỏi:

08/01/2026 12 Lưu

II. PHẦN TỰ LUẬN

Trước diễn biến phức tạp của dịch bệnh sốt xuất huyết, Sở Y tế thành phố Hà Nội lựa chọn kiểm tra ngẫu nhiên công tác chuẩn bị của \(4\) đội phòng chống dịch cơ động trong số \(6\) đội của Trung tâm y tế dự phòng thành phố và \(15\) đội của các Trung tâm y tế cơ sở. Tính xác suất để có ít nhất \(2\) đội của các Trung tâm y tế cơ sở được chọn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có \(n\left( \Omega  \right) = 5\,\,985\)

Gọi \(A\) là biến cố trong \(4\) đội có ít nhất \(2\) đội của các Trung tâm y tế cơ sở được chọn.

Khi đó \(\overline A \) là biến cố trong \(4\) đội có nhiều nhất \(1\) đội của các Trung tâm y tế cơ sở được chọn.

Các kết quả thuận lợi cho biến cố \(\overline A \) được chia làm \(2\) phương án:

- Phương án 1: Không có đội của các Trung tâm y tế cơ sở có: \(C_6^4\) cách.

- Phương án 2: Có \(1\) đội của Trung tâm y tế cơ sở có \(C_6^3.C_{15}^1\) cách.

\( \Rightarrow n\left( {\overline A } \right) = C_6^4 + C_6^3.C_{15}^1 = 315\)

\( \Rightarrow P\left( {\overline A } \right) = \frac{{315}}{{5\,\,985}} = \frac{1}{{19}}\).

\( \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{19}} = \frac{{18}}{{19}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB} \left( {6;\,\,4} \right) = 2\left( {3;2} \right)\)

Khi đó \(\left( {3;\,\,2} \right)\) là một vectơ chỉ phương đường thẳng \(\left( \Delta  \right)\) hay ta có \(\left( {2; - 3} \right)\) là một vectơ pháp tuyến của đường thẳng \(\left( \Delta  \right)\).

Vậy phương trình đường thẳng \(\left( \Delta  \right)\) là:

\(2\left( {x + 2} \right) - 3\left( {y - 1} \right) = 0 \Leftrightarrow 2x - 3y + 7 = 0\).

b) Vectơ pháp tuyến của đường thẳng \(\left( d \right):3x - y + 2 = 0\) là \(\left( {3; - 1} \right)\).

Vì đường thẳng \(\left( \Delta  \right)\) song song với đường thẳng \(\left( d \right)\) nên \(\left( {3; - 1} \right)\) cũng là một vectơ pháp tuyến của \(\left( \Delta  \right)\).

Vì vậy phương trình đường thẳng \(\left( d \right)\)là:

\(3\left( {x + 2} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow 3x - y + 7 = 0\).

c) Gọi \(d'\) là đường thẳng vuông góc với đường thẳng \(AB\) tại điểm \(A\).

Một vectơ pháp tuyến của \(\left( d \right)\) là \(\left( {1;\,\, - 4} \right)\) nên vectơ chỉ phương là \(\left( {4;1} \right)\).

Vì \(d' \bot d\) nên \(\left( {d'} \right)\) nhận \(\left( {4;1} \right)\) làm một vectơ pháp tuyến, nên phương trình \(\left( {d'} \right)\) là:

\(4\left( {x + 2} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow 4x - y + 9 = 0\).

Tọa độ điểm \(M\) cần tìm là giao điểm của đường thẳng \(\left( d \right)\) và \(\left( {d'} \right)\) nên ta có:

\(\left\{ \begin{array}{l}4x - y + 9 = 0\\x - 4y + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{{31}}{{15}}\\y =  - \frac{{11}}{{15}}\end{array} \right. \Rightarrow M\left( { - \frac{{31}}{{15}}; - \frac{{11}}{{15}}} \right)\).

Lời giải

Hướng dẫn giải 

a) Để tạo đề kiểm tra gồm \(5\) câu hỏi sao cho có đủ ba loại câu hỏi và có đúng \(2\) câu hỏi dễ sẽ có các phương án sau:

- Phương án 1: Đề gồm \(2\) câu hỏi dễ, \(2\) câu trung bình và \(1\) câu khó có \(C_{10}^2.C_6^2.C_4^1 = 2700\) đề.

- Phương án 2: Đề gồm \(2\) câu hỏi dễ, \(3\) câu trung bình có \(C_{10}^2.C_6^3 = 900\) đề.

- Phương án 3: Đề gồm \(2\) câu hỏi dễ, \(1\) câu trung bình và \(2\) câu khó có \(C_{10}^2.C_6^1.C_4^2 = 1620\) đề.

Áp dụng quy tắc cộng có \(2700 + 900 + 1620 = 5220\) đề.

b) Ta có: \(T = C_4^0 + 2C_4^1 + 4C_4^2 + 8C_4^3 + 16C_4^4\)

\( = C_4^0{.1^4} + C_4^1{.1^3}.2 + C_4^2{.1.2^2} + C_4^3{.1.2^3} + C_4^4{.1.2^4}\)

\( = {\left( {1 + 2} \right)^4}\)

\( = {3^4}\)

\( = 81\).

Câu 3

A. Không có đường tròn nào; 
B. Có duy nhất một đường tròn;
C. Có vô số đường tròn; 
D. Có hai đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(m \ne  \pm \sqrt 5 \);  
B. \(m \in \mathbb{R}\); 
C. \(m \in \emptyset \); 
D. \(m \ne  \pm 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {\frac{3}{2}; + \infty } \right)\);                    
B. \(\left( {0;3} \right)\); 
C. \(\left( { - \infty ;0} \right) \cup \left( {3; + \infty } \right)\);   
D. \(\left( { - \infty ;\frac{3}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(G\left( {2;\,11} \right)\); 
B. \(G\left( {1;\,\frac{{11}}{2}} \right)\); 
C. \(G\left( {\frac{2}{3};\frac{{11}}{3}} \right)\);
D. \(G\left( {2;\frac{{11}}{3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP