Cho \(10\) điểm phân biệt nằm trong mặt phẳng. Hỏi có bao nhiêu đoạn thẳng có hai đầu mút là hai trong \(10\) điểm đó?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Các đoạn thẳng được lập không phân biệt điểm đầu và điểm cuối (ví dụ đoạn thẳng \(AB\) và đoạn thẳng \(BA\) là giống nhau).
Vậy cứ hai điểm phân biệt sẽ cho ta một đoạn thẳng.
Số đoạn thẳng có hai đầu mút là hai trong tám điểm nói trên là \(C_{10}^2 = 45\) đoạn thẳng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có sơ đồ sau:
|
Dãy ghế thứ nhất |
1 |
2 |
3 |
4 |
|
Dãy ghế thứ hai |
5 |
6 |
7 |
8 |
Ở ghế 1: có \(8\) cách chọn học sinh ngồi vào ghế
Ở ghế 5: có \(4\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 2: có \(6\) cách chọn học sinh ngồi vào ghế
Ở ghế 6: có \(3\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 3: có \(4\) cách chọn học sinh ngồi vào ghế
Ở ghế 7: có \(2\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Ở ghế 4: có \(2\) cách chọn học sinh ngồi vào ghế
Ở ghế 8: có \(1\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).
Vậy có: \(8.4.6.3.4.2.2.1 = 9\,\,216\) cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi số cần tìm có dạng \[\overline {ab} \]
Vì đều là số chẵn nên
\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong bốn số \(2;4;6;8\))
\[b\] có \(5\) cách chọn (vì \(b\) được chọn từ một trong năm số \(0;2;4;6;8\))
Như vậy, ta có \[4.5 = 20\] số cần tìm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
