Câu hỏi:

09/01/2026 6 Lưu

Đội văn nghệ của nhà trường gồm \(4\) học sinh lớp \(12A\), \(3\) học sinh lớp \(12B\) và \(2\) học sinh lớp \(12C\). Chọn ngẫu nhiên \(4\) học sinh từ đội văn nghệ để biễu diễn trong lễ bế giảng. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

A. \(120\);
B. \(72\);
C. \(150\);  
D. \(360\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Vì cần chọn ra \(4\) học sinh có đủ cả \(3\) lớp nên ta có các trường hợp

Trường hợp 1: Chọn \(1\) học sinh lớp \(12A\), \(1\) học sinh lớp \(12B\), \(2\) học sinh lớp \(12C\) có: \(C_4^1.C_3^1.C_2^2 = 12\).

Trường hợp 2: Chọn \(1\) học sinh lớp \(12A\), \(2\) học sinh lớp \(12B\), \(1\) học sinh lớp \(12C\) có: \(C_4^1.C_3^2.C_2^1 = 24\).

Trường hợp 3: Chọn \(2\) học sinh lớp \(12A\), \(1\) học sinh lớp \(12B\), \(1\) học sinh lớp \(12C\) có: \(C_4^2.C_3^1.C_2^1 = 36\).

Áp dụng quy tắc cộng có: \(12 + 24 + 36 = 72\) cách chọn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Từ một điểm nằm ngoài đường tròn có thể vẽ được \(2\) tiếp tuyến đến đường tròn đó.

Lời giải

Hướng dẫn giải

Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số thỏa yêu cầu bài toán thì \({a_3} + {a_4} + {a_5} = 8\).

Có hai bộ \(3\) số có tổng bằng \(8\) trong các số \(1;2;3;...;9\) là: \(\left\{ {1;2;5} \right\}\)và \(\left\{ {1;3;4} \right\}\)

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) thì \({a_3},{a_4},{a_5}\) có \(3!\) cách chọn và \({a_1},{a_2},{a_6}\) có \(A_6^3\) cách chọn suy ra có \(3!A_6^3 = 720\) số thỏa mãn yêu cầu.

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) tương tự ta cũng có \(720\) số thỏa yêu cầu.

Vậy có \(720 + 720 = 1400\) số thỏa yêu cầu.

b) Điều kiện: \[n \ge 2,n \in {\mathbb{N}^*}\]

\[C_n^1 + C_n^2 = 15 \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15 \Leftrightarrow {n^2} + n - 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 5}\\{n =  - 6}\end{array}} \right. \Rightarrow n = 5\]

Khi đó,

\[{\left( {x + \frac{2}{{{x^4}}}} \right)^5} = C_5^0{x^5}{\left( {\frac{2}{{{x^4}}}} \right)^0} + C_5^1{x^4}\left( {\frac{2}{{{x^4}}}} \right) + C_5^2{x^3}{\left( {\frac{2}{{{x^4}}}} \right)^2} + C_5^3{x^2}{\left( {\frac{2}{{{x^4}}}} \right)^3} + C_5^4x{\left( {\frac{2}{{{x^4}}}} \right)^4} + C_5^5{x^0}{\left( {\frac{2}{{{x^4}}}} \right)^5}\]\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\)

Suy hệ số của số hạng không chứa \[x\] trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^5}\) là \(10\).

Câu 3

A. \[I\left( {2;3} \right),\,\,R = 9\];
B. \[I\left( {2; - 3} \right),\,\,R = 3\];
C. \[I\left( { - 3;2} \right),\,\,R = 3\]; 
D. \[I\left( { - 2;3} \right),\,\,R = 3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow v  = \left( {2;\,\,0} \right)\); 
B. \(\overrightarrow v  = \left( { - 2;\,\,1} \right)\);         
C. \(\overrightarrow v  = \left( {2;\, - 1} \right)\);  
D. \(\overrightarrow v  = \left( { - 2;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP