Cho hai đường thẳng \[d:2x - y + 3 = 0\] và \[\Delta :x + 3y - 2 = 0\]. Đường thẳng \(d\) cắt \(\Delta \) tại \(A\). Điểm \(M\left( {0;{\rm{ }}3} \right)\) thuộc đường thẳng \(d\). Lấy điểm \(M'\) đối xứng với điểm \(M\) qua \(\Delta \). Viết phương trình đường thẳng \(d'\) đi qua điểm \(A\) và điểm \(M'\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Giao điểm \(A\) của \(d\) và \(\Delta \) là nghiệm của hệ
\[\left\{ \begin{array}{l}2x - y + 3 = 0\\x + 3y - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - y = - 3\\x + 3y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 1\end{array} \right. \Rightarrow A\left( { - 1;{\rm{ }}1} \right)\].
Viết phương trình đường thẳng \(\Delta '\) đi qua \(M\) và vuông góc với \(\Delta \): \(\Delta ':3x - y + c = 0\)
Vì \(M \in \Delta ' \Rightarrow 3.0 - 3 + c = 0 \Rightarrow c = 3\)
Vậy phương trình đường thẳng \(\Delta ':3x - y + 3 = 0\)
Gọi \[H\] là giao điểm của \(\Delta '\) và đường thẳng \(\Delta \). Tọa độ \[H\] là nghiệm của hệ
\[\left\{ \begin{array}{l}x + 3y - 2 = 0\\3x - y + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + 3y = 2\\3x - y = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{7}{{10}}\\y = \frac{9}{{10}}\end{array} \right. \Rightarrow H\left( { - \frac{7}{{10}};{\rm{ }}\frac{9}{{10}}} \right)\].
Ta có \[H\] là trung điểm của \(MM'\). Từ đó suy ra tọa độ \(M'\left( { - \frac{7}{5};{\rm{ }} - \frac{6}{5}} \right)\)
Viết phương trình đường thẳng \(d'\) chính là phương trình đường thẳng \(AM'\):
Ta có phương trình đường thẳng \(AM'\) đi qua \[A( - 1;1)\], có vectơ chỉ phương là vectơ \(\overrightarrow {AM'} = \left( {\frac{2}{5};{\rm{ }}\frac{{11}}{5}} \right)\) suy ra vectơ pháp tuyến \(\overrightarrow n = \left( {\frac{{11}}{5};{\rm{ }} - \frac{2}{5}} \right)\)
\(d' = AM':\frac{{11}}{5}\left( {x + 1} \right) - \frac{2}{5}\left( {y - 1} \right) = 0 \Leftrightarrow 11x - 2y + 13 = 0\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số thỏa yêu cầu bài toán thì \({a_3} + {a_4} + {a_5} = 8\).
Có hai bộ \(3\) số có tổng bằng \(8\) trong các số \(1;2;3;...;9\) là: \(\left\{ {1;2;5} \right\}\)và \(\left\{ {1;3;4} \right\}\)
Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) thì \({a_3},{a_4},{a_5}\) có \(3!\) cách chọn và \({a_1},{a_2},{a_6}\) có \(A_6^3\) cách chọn suy ra có \(3!A_6^3 = 720\) số thỏa mãn yêu cầu.
Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) tương tự ta cũng có \(720\) số thỏa yêu cầu.
Vậy có \(720 + 720 = 1400\) số thỏa yêu cầu.
b) Điều kiện: \[n \ge 2,n \in {\mathbb{N}^*}\]
\[C_n^1 + C_n^2 = 15 \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15 \Leftrightarrow {n^2} + n - 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 5}\\{n = - 6}\end{array}} \right. \Rightarrow n = 5\]
Khi đó,
\[{\left( {x + \frac{2}{{{x^4}}}} \right)^5} = C_5^0{x^5}{\left( {\frac{2}{{{x^4}}}} \right)^0} + C_5^1{x^4}\left( {\frac{2}{{{x^4}}}} \right) + C_5^2{x^3}{\left( {\frac{2}{{{x^4}}}} \right)^2} + C_5^3{x^2}{\left( {\frac{2}{{{x^4}}}} \right)^3} + C_5^4x{\left( {\frac{2}{{{x^4}}}} \right)^4} + C_5^5{x^0}{\left( {\frac{2}{{{x^4}}}} \right)^5}\]\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\)
Suy hệ số của số hạng không chứa \[x\] trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^5}\) là \(10\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phương trình đường tròn tâm \(I\left( {a;b} \right)\) có bán kính \(R\) có dạng :
\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
Vậy đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 3} \right)\) và bán kính \(R = 3\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.