Câu hỏi:

09/01/2026 8 Lưu

Trong mặt phẳng \(Oxy\), đường thẳng nào dưới đây không có vectơ pháp tuyến là \(\left( {1;\,2} \right)\)?

A. \(x + 2y = 9\); 
B. \( - 3x - 6y + 7 = 0\);
C. \(x - 2y - 19 = 0\); 
D. \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 - t\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

+) Đường thẳng \(x + 2y = 9\) có tọa độ vectơ pháp tuyến là \(\left( {1;\,2} \right)\). Do đó A sai.                                           

+) Đường thẳng \( - 3x - 6y + 7 = 0\) có tọa độ vectơ pháp tuyến là \(\left( { - 3;\,\, - 6} \right) =  - 3\left( {1;\,2} \right)\). Do đó B sai.

+) Đường thẳng \(x - 2y - 19 = 0\) có tọa độ vectơ pháp tuyến là \(\left( {1; - 2} \right) \ne \left( {1;\,2} \right)\). Do đó C đúng.

+) Đường thẳng \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 - t\end{array} \right.\) có vectơ chỉ phương là \(\left( {2; - 1} \right)\) nên có vectơ pháp tuyến là

\(\left( {1;\,2} \right)\). Do đó D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có cách chia 9 người thành 3 tổ có \(C_9^3.C_6^3.C_3^3 = 1\,\,680\)

Tổ 1 có \(C_3^1\) cách chọn bác sĩ, \(C_6^2\) cách chọn người còn lại. Do đó \(C_3^1.C_6^2 = 45\) cách.

Tổ 2 có \(C_2^1\) cách chọn bác sĩ, \(C_4^2\) cách chọn người còn lại. Do đó \(C_2^1.C_4^2 = 12\) cách.

Tổ 3 có \(C_1^1\) cách chọn bác sĩ, \(C_2^2\) cách chọn người còn lại. Do đó \(C_1^1.C_2^2 = 1\) cách.

Tổng có: \(45.12.1 = 540\) cách chia thành 3 tổ để mỗi tổ đều có bác sĩ .

Do đó xác suất để mỗi tổ đều có bác sĩ là \(\frac{{540}}{{1\,\,680}} = \frac{9}{{28}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Số gồm bốn chữ số khác nhau từ \(4\)chữ số \(1;\,\,2;\,\,3;\,\,4\) là hoán vị của \(4\) nên có: \(4! = 24\) số.

Câu 5

A. \(4\) viên bi lấy ra cùng màu;                             
B. \(4\) viên bi lấy ra đều màu đen;
C. \(4\) viên bi lấy ra có ít nhất một viên bi đen;     
D. \(4\) viên bi lấy ra có đủ hai màu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP