Câu hỏi:

09/01/2026 8 Lưu

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai điểm \(A\left( { - 1;\,\,3} \right)\) và \(B\left( {9; - 7} \right)\). Phương trình đường trung trực của đoạn thẳng \(AB\) là

A. \(2x - y - 10 = 0\); 
B. \(x - y - 6 = 0\); 
C. \(x - y + 4 = 0\); 
D. \(2x - y + 5 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Gọi \(I\) là trung điểm của \(AB\) nên tọa độ điểm \(I\) là \(\left( {4;\,\, - 2} \right)\).

Ta có: \(\overrightarrow {AB} \left( {10; - 10} \right) = 10\left( {1; - 1} \right)\)

Đường thẳng trung trực của đoạn thẳng \(AB\) nhận \(\left( {1; - 1} \right)\) làm vectơ pháp tuyến và đi qua điểm  \(I\left( {4;\,\, - 2} \right)\) nên có phương trình: \(x - 4 - \left( {y + 2} \right) = 0 \Leftrightarrow x - y - 6 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có cách chia 9 người thành 3 tổ có \(C_9^3.C_6^3.C_3^3 = 1\,\,680\)

Tổ 1 có \(C_3^1\) cách chọn bác sĩ, \(C_6^2\) cách chọn người còn lại. Do đó \(C_3^1.C_6^2 = 45\) cách.

Tổ 2 có \(C_2^1\) cách chọn bác sĩ, \(C_4^2\) cách chọn người còn lại. Do đó \(C_2^1.C_4^2 = 12\) cách.

Tổ 3 có \(C_1^1\) cách chọn bác sĩ, \(C_2^2\) cách chọn người còn lại. Do đó \(C_1^1.C_2^2 = 1\) cách.

Tổng có: \(45.12.1 = 540\) cách chia thành 3 tổ để mỗi tổ đều có bác sĩ .

Do đó xác suất để mỗi tổ đều có bác sĩ là \(\frac{{540}}{{1\,\,680}} = \frac{9}{{28}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Số gồm bốn chữ số khác nhau từ \(4\)chữ số \(1;\,\,2;\,\,3;\,\,4\) là hoán vị của \(4\) nên có: \(4! = 24\) số.

Câu 5

A. \(4\) viên bi lấy ra cùng màu;                             
B. \(4\) viên bi lấy ra đều màu đen;
C. \(4\) viên bi lấy ra có ít nhất một viên bi đen;     
D. \(4\) viên bi lấy ra có đủ hai màu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP