Câu hỏi:

09/01/2026 6 Lưu

Tập nghiệm của bất phương trình \({x^2} - 4x - 3 \le 2\) có dạng \(S = \left[ {a;b} \right]\). Giá trị biểu thức \(a - b\) bằng

A. \(4\);    
B. \(6\);      
C.\[ - 6\]; 
D. \( - 2\sqrt 7 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có \({x^2} - 4x - 3 \le 2 \Leftrightarrow {x^2} - 4x - 5 \le 0\)

Xét hàm số \(f(x) = {x^2} - 4x - 5\) là tam thức bậc hai có \(a = 1 > 0\) và \(\Delta  = {\left( { - 4} \right)^2} - 4.1.\left( { - 5} \right) = 36 > 0\) nên \(f\left( x \right)\) có hai nghiệm phân biệt \({x_1} =  - 1\) và \({x_2} = 5\).

Áp dụng đinh lí về dấu ta có \(f(x) \le 0\) khi \(x \in \left[ { - 1;5} \right]\).

Do đó \(S = \left[ { - 1;5} \right] \Rightarrow a =  - 1,b = 5 \Rightarrow a - b =  - 1 - 5 =  - 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có cách chia 9 người thành 3 tổ có \(C_9^3.C_6^3.C_3^3 = 1\,\,680\)

Tổ 1 có \(C_3^1\) cách chọn bác sĩ, \(C_6^2\) cách chọn người còn lại. Do đó \(C_3^1.C_6^2 = 45\) cách.

Tổ 2 có \(C_2^1\) cách chọn bác sĩ, \(C_4^2\) cách chọn người còn lại. Do đó \(C_2^1.C_4^2 = 12\) cách.

Tổ 3 có \(C_1^1\) cách chọn bác sĩ, \(C_2^2\) cách chọn người còn lại. Do đó \(C_1^1.C_2^2 = 1\) cách.

Tổng có: \(45.12.1 = 540\) cách chia thành 3 tổ để mỗi tổ đều có bác sĩ .

Do đó xác suất để mỗi tổ đều có bác sĩ là \(\frac{{540}}{{1\,\,680}} = \frac{9}{{28}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Số gồm bốn chữ số khác nhau từ \(4\)chữ số \(1;\,\,2;\,\,3;\,\,4\) là hoán vị của \(4\) nên có: \(4! = 24\) số.

Câu 5

A. \(4\) viên bi lấy ra cùng màu;                             
B. \(4\) viên bi lấy ra đều màu đen;
C. \(4\) viên bi lấy ra có ít nhất một viên bi đen;     
D. \(4\) viên bi lấy ra có đủ hai màu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP