Câu hỏi:

09/01/2026 7 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {3;\,\,4} \right),\,B\left( { - 2;\,\,0} \right),\,C\left( {1;7} \right)\). Tọa độ trọng tâm \(G\) của tam giác \(ABC\) là

A. \(G\left( {2;\,11} \right)\);  
B. \(G\left( {1;\,\frac{{11}}{2}} \right)\); 
C. \(G\left( {\frac{2}{3};\frac{{11}}{3}} \right)\); 
D. \(G\left( {2;\frac{{11}}{3}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Tọa độ trọng tâm \(G\) là:

\(\left\{ \begin{array}{l}{x_G} = \frac{{3 + \left( { - 2} \right) + 1}}{3} = \frac{2}{3}\\{y_G} = \frac{{4 + 0 + 7}}{3} = \frac{{11}}{3}\end{array} \right. \Rightarrow G\left( {\frac{2}{3};\frac{{11}}{3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có cách chia 9 người thành 3 tổ có \(C_9^3.C_6^3.C_3^3 = 1\,\,680\)

Tổ 1 có \(C_3^1\) cách chọn bác sĩ, \(C_6^2\) cách chọn người còn lại. Do đó \(C_3^1.C_6^2 = 45\) cách.

Tổ 2 có \(C_2^1\) cách chọn bác sĩ, \(C_4^2\) cách chọn người còn lại. Do đó \(C_2^1.C_4^2 = 12\) cách.

Tổ 3 có \(C_1^1\) cách chọn bác sĩ, \(C_2^2\) cách chọn người còn lại. Do đó \(C_1^1.C_2^2 = 1\) cách.

Tổng có: \(45.12.1 = 540\) cách chia thành 3 tổ để mỗi tổ đều có bác sĩ .

Do đó xác suất để mỗi tổ đều có bác sĩ là \(\frac{{540}}{{1\,\,680}} = \frac{9}{{28}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Số gồm bốn chữ số khác nhau từ \(4\)chữ số \(1;\,\,2;\,\,3;\,\,4\) là hoán vị của \(4\) nên có: \(4! = 24\) số.

Câu 5

A. \(4\) viên bi lấy ra cùng màu;                             
B. \(4\) viên bi lấy ra đều màu đen;
C. \(4\) viên bi lấy ra có ít nhất một viên bi đen;     
D. \(4\) viên bi lấy ra có đủ hai màu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP