Câu hỏi:

09/01/2026 12 Lưu

II. PHẦN TỰ LUẬN

Một lớp học có \(30\) học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên \(3\) học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được \(2\)nam và \(1\)  nữ là \(\frac{{12}}{{29}}\). Tính số học sinh nữ của lớp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi số học sinh nữ của lớp là \(n\left( {n \in {\mathbb{N}^*},n \le 28} \right)\).

Suy ra số học sinh nam là \(30 - n\).

Không gian mẫu là chọn bất kì \(3\)  học sinh từ \(30\) học sinh.

Suy ra số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{30}^3\).

Gọi \(A\) là biến cố Chọn được \(2\) học sinh nam và \(1\)  học sinh nữ .

+ Chọn \(2\) nam trong \(30 - n\) nam, có \(C_{30 - n}^2\) cách.

+ Chọn \(1\) nữ trong \(n\) nữ, có \(C_n^1\) cách.

Suy ra số phần tử của biến cố \(A\) là \(n\left( A \right) = C_{30 - n}^2.C_n^1\).

Do đó xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}}\) .

Theo giả thiết, ta có \(P\left( A \right) = \frac{{12}}{{29}} \Leftrightarrow \frac{{C_{30 - n}^2.C_n^1}}{{C_{30}^3}} = \frac{{12}}{{29}}\)

\( \Leftrightarrow \frac{{\left( {30 - n} \right)\left( {29 - n} \right)\left( {28 - n} \right)!.n}}{{2!.\left( {28 - n} \right)!}} = 1680\)

\( \Leftrightarrow \left( {30 - n} \right)\left( {29 - n} \right).n = 3360 \Leftrightarrow {n^3} - 59{n^2} + 870n - 3360 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n \approx 38,82\\n = 14\\n \approx 6,18\end{array} \right.\)

Vì \(n \in {\mathbb{N}^*} \Rightarrow n = 14\)

Vậy số học sinh nữ của lớp là \(14\) học sinh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có cách chia 9 người thành 3 tổ có \(C_9^3.C_6^3.C_3^3 = 1\,\,680\)

Tổ 1 có \(C_3^1\) cách chọn bác sĩ, \(C_6^2\) cách chọn người còn lại. Do đó \(C_3^1.C_6^2 = 45\) cách.

Tổ 2 có \(C_2^1\) cách chọn bác sĩ, \(C_4^2\) cách chọn người còn lại. Do đó \(C_2^1.C_4^2 = 12\) cách.

Tổ 3 có \(C_1^1\) cách chọn bác sĩ, \(C_2^2\) cách chọn người còn lại. Do đó \(C_1^1.C_2^2 = 1\) cách.

Tổng có: \(45.12.1 = 540\) cách chia thành 3 tổ để mỗi tổ đều có bác sĩ .

Do đó xác suất để mỗi tổ đều có bác sĩ là \(\frac{{540}}{{1\,\,680}} = \frac{9}{{28}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Số gồm bốn chữ số khác nhau từ \(4\)chữ số \(1;\,\,2;\,\,3;\,\,4\) là hoán vị của \(4\) nên có: \(4! = 24\) số.

Câu 4

A. \(4\) viên bi lấy ra cùng màu;                             
B. \(4\) viên bi lấy ra đều màu đen;
C. \(4\) viên bi lấy ra có ít nhất một viên bi đen;     
D. \(4\) viên bi lấy ra có đủ hai màu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP