a) Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi vận động viên còn lại. Cho biết có \(2\) vận động viên nữ và cho biết số ván các vận động viên nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là \(84\). Hỏi số ván tất cả các vận động viên đã chơi?
b) Giải phương trình \(\sqrt {3x - 5} = \sqrt {2{x^2} - 4x} \).
a) Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi vận động viên còn lại. Cho biết có \(2\) vận động viên nữ và cho biết số ván các vận động viên nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là \(84\). Hỏi số ván tất cả các vận động viên đã chơi?
b) Giải phương trình \(\sqrt {3x - 5} = \sqrt {2{x^2} - 4x} \).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Gọi số vận động viên nam là \(n\) (vận động viên) \(\left( {n \in {\mathbb{N}^*}} \right)\).
Số ván các vận động viên nam chơi với nhau là \(2.C_n^2 = n(n - 1)\).
Số ván các vận động viên nam chơi với các vận động viên nữ là \(C_2^1.C_n^2.2 = 4n\).
Khi đó ta có \(n\left( {n - 1} \right) - 4n = 84 \Rightarrow n = 12\) (loại \(n = - 7\)).
Vậy tổng số ván các vận động viên chơi là \(2.C_{14}^2 = 182\).
b) Bình phương hai vế của phương trình ta được:
\(3x - 5 = 2{x^2} - 4x\)
\( \Rightarrow 2{x^2} - 7x + 5 = 0\)
\( \Rightarrow \left[ \begin{array}{l}x = 1\\x = \frac{5}{2}\end{array} \right.\)
Thay lần lượt \(x = 1\) và \(x = \frac{5}{2}\) vào phương trình đã cho ta thấy chỉ có \(x = \frac{5}{2}\) là thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{5}{2}} \right\}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có cách chia 9 người thành 3 tổ có \(C_9^3.C_6^3.C_3^3 = 1\,\,680\)
Tổ 1 có \(C_3^1\) cách chọn bác sĩ, \(C_6^2\) cách chọn người còn lại. Do đó \(C_3^1.C_6^2 = 45\) cách.
Tổ 2 có \(C_2^1\) cách chọn bác sĩ, \(C_4^2\) cách chọn người còn lại. Do đó \(C_2^1.C_4^2 = 12\) cách.
Tổ 3 có \(C_1^1\) cách chọn bác sĩ, \(C_2^2\) cách chọn người còn lại. Do đó \(C_1^1.C_2^2 = 1\) cách.
Tổng có: \(45.12.1 = 540\) cách chia thành 3 tổ để mỗi tổ đều có bác sĩ .
Do đó xác suất để mỗi tổ đều có bác sĩ là \(\frac{{540}}{{1\,\,680}} = \frac{9}{{28}}\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Số gồm bốn chữ số khác nhau từ \(4\)chữ số \(1;\,\,2;\,\,3;\,\,4\) là hoán vị của \(4\) nên có: \(4! = 24\) số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.