Câu hỏi:

11/01/2026 55 Lưu

Trong nhiều trường hợp, khi không thể xác định chính xác cân nặng của trẻ nhỏ, người ta thường ước tính cân nặng \(y\,{\rm{ }}\left( {{\rm{kg}}} \right)\) của trẻ \(x\) (tuổi) theo công thức: \(y = 2x + 10\) với \(1 \le x \le 10\).

a) \(y\) có phải là hàm số bậc nhất của \(x\) không? Vì sao?

b) Tính cân nặng của trẻ \(6\) tuổi theo công thức trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(y\) là hàm số bậ nhất của \(x\)

Vì có dạng \(y = ax + b\) với \(\left\{ \begin{array}{l}a = 2 \ne 0\\b = 10\end{array} \right.\)

Với mỗi giá trị của \(x\) thuộc \(1 \le x \le 10\) thì ta nhận được một giá trị của \(y\).

b) Cân nặng của trẻ \(6\) tuổi theo công thức trên là: \(y = 2.6 + 10 = 22\)

Vậy khi trẻ \(6\) tuổi thì cân nặng là \(22\,{\rm{kg}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A = \frac{{x + 1}}{{\sqrt x  - 1}} - \frac{{x\sqrt x  + 1}}{{x - 1}}\,\)

        \( = \frac{{\left( {x + 1} \right)\left( {\sqrt x  + 1} \right) - x\sqrt x  - 1}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  - 1} \right)}}\)

        \( = \frac{{x\sqrt x  + x + \sqrt x  + 1 - x\sqrt x  - 1}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  - 1} \right)}}\)

        \( = \frac{{x + \sqrt x }}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  - 1} \right)}}\)

        \( = \frac{{\sqrt x \left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  + 1} \right)\left( {\sqrt x  - 1} \right)}}\)\( = \frac{{\sqrt x }}{{\sqrt x  - 1}}\).

b) Khi \(x = 4\) ta có \(A = \frac{{\sqrt 4 }}{{\sqrt 4  - 1}} = \frac{2}{{2 - 1}} = 2\)

Vậy khi \(x = 4\) thì \(A = 2\).    

Lời giải

 

                                                                          Media VietJack

a) Vì \(MA,\,MB\) là hai tiếp tuyến cắt nhau tại \(M\) nên \(MA = MB\), suy ra \(M\) thuộc trung trực của \(AB\) \(\left( 1 \right)\).

Xét \(\left( O \right)\) có \(OA = OB\) suy ra \(O\) thuộc trung trực của \(AB\) \(\left( 2 \right)\).

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(OM\) là đường trung trực của \(AB\) hay \(OM \bot AB\) tại \(P\).

Ta có \(OA = OC\) suy ra \(\Delta AOC\) cân tại \(O\), khi đó \(ON \bot AC\) hay \(ON \bot AN\).

Gọi \(I\) là trung điểm của của \(OA\) mà các \(\Delta OPA\), \(\Delta ONA\) lần lượt vuông tại \(P,{\rm{ }}N\) nên ta có \(IP = IN = IA = IO = \frac{{OA}}{2}\).

Vậy bốn  điểm \(A,{\rm{ }}P,{\rm{ }}N,{\rm{ }}O\) cùng thuộc \(\left( {I;{\rm{ }}\frac{{AO}}{2}} \right)\).

b) Ta có \(MA = MB\) nên \(\widehat {MAB} = \widehat {MBA}\) \(\left( 3 \right)\)

Do \(\Delta ABC\)cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB}\) \(\left( 4 \right)\)

Xét \(\Delta MPA\) và \(\Delta MAO\) có:

\(\widehat {MPA} = \widehat {MAO} = 90^\circ \)

\(\widehat {AMO}\) chung

Suy ra \(\left( {{\rm{g}}{\rm{.g}}} \right)\).

Nên \(\widehat {MAB} = \widehat {MAP} = \widehat {MOA} = \frac{1}{2}\widehat {BOA}\) \(\left( 5 \right)\)

Mà \(\widehat C\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ACB} = \frac{1}{2}\widehat {BOA}\) \(\left( 6 \right)\)

Từ \(\left( 3 \right)\), \(\left( 4 \right)\), \(\left( 5 \right)\), \(\left( 6 \right)\) suy ra \(\widehat {MAB} = \widehat {MBA} = \widehat {ACB} = \widehat {ABC}\).

Xét \(\Delta MAB\)và \(\Delta ACB\) có:

\(\widehat {MAB} = \widehat {ACB}\) (cmt)

\(\widehat {MBA} = \widehat {ABC}\) (cmt)

Suy ra \(\left( {g.g} \right)\).

Ta có \(\frac{{MB}}{{MA}} = \frac{{AB}}{{AC}}\) suy ra \(\frac{{MB}}{{2MK}} = \frac{{AB}}{{2AN}}\) nên \(\frac{{MB}}{{MK}} = \frac{{AB}}{{AN}}\).

Xét \(\Delta MBK\)và \(\Delta ABN\) có:

\(\widehat M = \widehat A\)

\(\frac{{MB}}{{MK}} = \frac{{AB}}{{AN}}\) (cmt)

Suy ra \(\left( {c.g.c} \right)\).

Khi đó \(\frac{{BM}}{{BK}} = \frac{{BA}}{{BN}}\)

Lại có \(BA = AC\) nên \(\frac{{BM}}{{BK}} = \frac{{CA}}{{BN}}\) hay \(BM{\rm{ }}.{\rm{ }}BN = CA\,\,.{\rm{ }}BK\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP