Câu hỏi:

11/01/2026 9 Lưu

Cho bảng kẻ ô vuông kích thước \(8 \times 8\) gồm có 64 ô vuông con (như hình vẽ bên). Người ta đặt 33 quân cờ vào các ô vuông con của bảng sao cho mỗi ô vuông con có không quá một quân cờ. Hai quân cờ được gọi là "chiếu nhau" nếu chúng nằm cùng một hàng hoặc nằm cùng một cột. Chứng minh rằng với mỗi cách đặt luôn tồn tại ít nhất 5 quân cờ đôi một không chiếu nhau.

Cho bảng kẻ ô vuông kích thước (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đánh số các ô của bảng như hình vẽ.

1

2

3

4

5

6

7

8

8

1

2

3

4

5

6

7

7

8

1

2

3

4

5

6

6

7

8

1

2

3

4

5

5

6

7

8

1

2

5

4

4

5

6

7

8

1

2

3

3

4

5

6

7

8

1

2

2

3

4

5

6

7

8

1

Theo nguyên lí Dirichle đặt 33 quân cờ vào mỗi ô mà có 8 loại ô là các số được đánh từ 1 đến 8 nên có ít nhất 5 quân cờ cùng một số. Theo bảng này các quân cờ được đặt trong các ô có cùng số thì không chiếu nhau.

Suy ra điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có:

\(\begin{array}{*{20}{l}}{{x^2} + 2{y^2} - 2xy - 2x - 4y + 6 = 0}\\{ \Leftrightarrow \left( {{x^2} + {y^2} + 1 - 2xy - 2x + 2y} \right) + \left( {{y^2} - 6y + 9} \right) = 4}\\{ \Leftrightarrow {{(x - y - 1)}^2} + {{(y - 3)}^2} = 4}\\{{\rm{ V\`i  }}x,y \in \mathbb{Z} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{(x - y - 1)}^2} = 4}\\{{{(y - 3)}^2} = 0}\end{array}\quad {\rm{ hoac }}\left\{ {\begin{array}{*{20}{l}}{{{(x - y - 1)}^2} = 0}\\{{{(y - 3)}^2} = 4}\end{array}} \right.} \right.}\end{array}\)

Trường hợp: \(\left\{ {\begin{array}{*{20}{l}}{{{(x - y - 1)}^2} = 4}\\{{{(y - 3)}^2} = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{(x - 4)}^2} = 4}\\{y = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{y = 3}\end{array}} \right.} \right.} \right.\) hoặc \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 3}\end{array}} \right.\).

Trường hợp: \(\left\{ {\begin{array}{*{20}{l}}{{{(x - y - 1)}^2} = 0}\\{{{(y - 3)}^2} = 4}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = y + 1}\\{y = 5}\\{y = 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{y = 5}\end{array}} \right.} \right.} \right.\) hoặc \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}} \right.\).

Vậy phương trình đã cho có bốn nghiệm \((x;y) = (6;3),(2;3),(6;5),(2;1)\).

b) Ta có: \(\frac{{{p^2} - p}}{2} - 1 = {a^3}\) với \(a \ge 0\). Khi đó:

\(\frac{{{p^2} - p}}{2} - 1 = {a^3} \Leftrightarrow p(p - 1) = 2(a + 1)\left( {{a^2} - a + 1} \right).\)Vì ưcln \((p;p - 1) = 1\) nên \(p(p - 1)\) chia hết cho \((a + 1) \Leftrightarrow p\) chia hết cho \((a + 1)\) hoặc \(p - 1\) chia hết cho \((a + 1)\).

- Xét \(p:(a + 1) \Rightarrow p = k(a + 1)\). Mà \(p\) là số nguyên tố suy ra: \(\left[ {\begin{array}{*{20}{l}}{k = 1}\\{a + 1 = 1}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{k = 1}\\{a = 0}\end{array}} \right.} \right.\).

Với \(a = 0 \Rightarrow p = 2\).

Nếu \(k = 1 \Rightarrow p = a + 1 \Rightarrow a(a + 1) = 2(a + 1)\left( {{a^2} - a + 1} \right)\), vô nghiệm.

Xét \(p - 1:(a + 1) \Rightarrow p = m(a + 1) + 1\). Khi đó ta có:

\(m(a + 1)p = 2(a + 1)\left( {{a^2} - a + 1} \right) \Leftrightarrow mp = 2\left( {{a^2} - a + 1} \right){\rm{ }}{\rm{. }}\)Ta có: \({a^2} - a + 1 = a(a - 1) + 1\) là một số lẽ. Suy ra: ưcln \(\left( {2;{a^2} - a + 1} \right) = 1\).

Nên \(2\left( {{a^2} - a + 1} \right):m \Leftrightarrow 2:m\) hoặc \(\left( {{a^2} - a + 1} \right):m\).

Nếu \(2:m \Rightarrow \left[ {\begin{array}{*{20}{l}}{m = 1}\\{m = 2}\end{array}} \right.\).

Với \(k = 1 \Rightarrow 2\left( {{a^2} - a + 1} \right) = a + 2 \Leftrightarrow 2{a^2} - 3a = 0 \Leftrightarrow a = 0\)

Với \(k = 2 \Rightarrow {a^2} - a + 1 = 2(a + 1) + 1 \Leftrightarrow {a^2} - 3a - 1 = 0\), vô nghiệm.

Nếu \({a^2} - a + 1:m \Rightarrow {a^2} - a + 1 = mn\). Khi đó ta có: \(m(a + 1) + 1 = 2n\).

Mặt khác \(p = m(a + 1) + 1 = 2n\) là số nguyên tố suy ra \(p = 2,n = 1 \Rightarrow a = 0\).

Tóm lại \(p = 2\) là số nguyên tố cần tìm.

Lời giải

a) Ta có: \((a + 2)(b + 2) = 8 \Leftrightarrow 2a + 2b + ab = 4\).

Do đó:

\[\begin{array}{*{20}{l}}{\sqrt {2\left( {{a^2} + 4} \right)\left( {{b^2} + 4} \right)}  = \sqrt {2\left( {{a^2} + ab + 2a + 2b} \right)\left( {{b^2} + ab + 2a + 2b} \right)} }\\{ = \sqrt {2{{(a + b)}^2}(a + 2)(b + 2)}  = \sqrt {2{{(a + b)}^2} \cdot 8}  = 4(a + b).}\end{array}\]

Suy ra:

\(\begin{array}{*{20}{l}}{2\sqrt {{a^2} + {b^2} + 8 - \sqrt {2\left( {{a^2} + 4} \right)\left( {{b^2} + 4} \right)} }  = 2\sqrt {{a^2} + {b^2} + 8 - 4(a + b)} }\\{ = 2\sqrt {{{(a + b)}^2} + 8 - 4(a + b) - 2ab}  = 2\sqrt {{{(a + b)}^2}}  = 2(a + b).}\end{array}\)

Khi đó: \(P = ab + 2(a + b) = 4\).

Vậy \(P = 4\).

b) Đặt \(x = a - b,y = b - c,z = c - a \Rightarrow x,y,z \ne 0\) và \(x + y + z = 0\).

Ta có:

\[\begin{array}{*{20}{l}}{B = \sqrt {\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}}}  = \sqrt {{{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)}^2} - 2\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right)}  = \sqrt {{{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)}^2} - \frac{{2(x + y + z)}}{{xyz}}} }\\{ = \sqrt {{{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)}^2}}  = \left| {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right|}\end{array}\]

Vì \[a,b,c\]là các số hữu tỷ nên \[x,y,z\]là các số hữu tỉ, do đó \(B\) là số hữu tỷ.