Đặt trên mặt bàn nằm ngang một cái ly thủy tinh đang chứa nước có dạng hình trụ với bán kính đáy \[R = 3{\rm{ }}cm\], mực nước ban đầu trong ly cao 5 cm (Hình 4). Sau đó, thả vao trong ly 6 viên bi sắt cùng loại (không thấm nước) có dạng hình cầu với bán kính \[r\]= 1 cm thì thấy mực nước trong ly dâng lên và không tràn ra ngoài (Hình 5).
Hỏi chiều cao của mực nước trong ly sau khi thả 6 viên bi đó vào là bao nhiêu centimét (bỏ qua độ dày của ly, làm tròn kết quả đến hàng phần trăm của cm)?

Đặt trên mặt bàn nằm ngang một cái ly thủy tinh đang chứa nước có dạng hình trụ với bán kính đáy \[R = 3{\rm{ }}cm\], mực nước ban đầu trong ly cao 5 cm (Hình 4). Sau đó, thả vao trong ly 6 viên bi sắt cùng loại (không thấm nước) có dạng hình cầu với bán kính \[r\]= 1 cm thì thấy mực nước trong ly dâng lên và không tràn ra ngoài (Hình 5).
Hỏi chiều cao của mực nước trong ly sau khi thả 6 viên bi đó vào là bao nhiêu centimét (bỏ qua độ dày của ly, làm tròn kết quả đến hàng phần trăm của cm)?

Quảng cáo
Trả lời:
Thể tích nước trong ly ban đầu là: \[{V_1} = \pi {R^2}h = \pi {.3^2}.5 = 45\pi (c{m^3})\]
Thể tích mỗi viên bi sắt là: \[{V_{bi}} = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {.1^3} = \frac{4}{3}\pi (c{m^3})\]
Thể tích 6 viên bi sắt là: \[{V_2} = 6.\frac{4}{3}\pi = 8\pi (c{m^3})\]
Thể tích nước trong ly sau khi thả 6 viên bi sắt vào là: \[V = 45\pi + 8\pi = 53\pi (c{m^3})\]
Chiều cao mực nước trong ly sau khi thả 6 viên bi đó vào là: \[h' = \frac{V}{{\pi {R^2}}} = \frac{{53\pi }}{{\pi {{.3}^2}}} = \frac{{53}}{9} \approx 5,89(cm)\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Do AD, BE là các đường cao của \[\Delta ABC\]nên \[\Delta HDC\]vuông tại D
Do đó H, C, D cùng thuộc đường tròn đường kính HC.
Tương tự \[\Delta HEC\]vuông tại E nên H, C, E cùng thuộc đường tròn đường kính HC
Vậy H, E, C, D cùng thuộc đường tròn đường kính HC hay tứ giác CDHE nội tiếp đường tròn.
b) Chứng minh tương tự câu a, ta có \[\Delta BEC\] vuông tại E và \[\Delta BFC\] vuông tại F nên B, C, E, F cùng thuộc đường tròn đường kính BC. Suy ra \[\widehat {EFC} = \widehat {EBC}\] (hai góc nội tiếp cùng chắn cung EC)
Do tứ giác EFCB nội tiếp nên \[\widehat {FEB} = \widehat {FCB}\] (hai góc nội tiếp cùng chắn cung FB)
Lại có \[\widehat {HED} = \widehat {HCD}\] (hai góc nội tiếp cùng chắn cung HD) nên \[\widehat {FEB} = \widehat {BED}\]
Kết hợp với \[\widehat {EFH} = \widehat {HBD}\] (hai góc nội tiếp cùng chắn cung CE) suy ra \[\Delta H{\rm{EF}} \sim \Delta {\rm{DEB(g}}{\rm{.g)}}\]
Suy ra \[\frac{{HE}}{{DE}} = \frac{{HF}}{{DB}}{\rm{ hay }}HE.{\rm{ }}DB{\rm{ }} = {\rm{ }}HF.{\rm{ }}DE\] (đpcm)
c) Ta có KB = KC (tính chất hai tiếp tuyến cắt nhau) và OB = OC (Cùng bằng bán kính của (O))
Suy ra OK là trung trực của đoạn thằng BC
Ta có: \[\widehat {OBK} = 90^\circ \] (do BK là tiếp tuyến) nên \[\widehat {MBK} + \widehat {OBA} = 180^\circ - \widehat {OBK} = 90^\circ \]
Hay \[\widehat {MBK} = 90^\circ - \widehat {OBA}{\rm{ (1)}}\]
Ta có \[\widehat {ACB} = \widehat {AFE}\] (do cùng cộng với \[\widehat {EFB}\] bằng \[180^\circ \]
Suy ra \[\widehat {OBA} = \widehat {OAB} = \frac{{180^\circ - \widehat {AOB}}}{2} = 90^\circ - \frac{{\widehat {AOB}}}{2} = 90^\circ - \widehat {ACB} = 90^\circ - \widehat {AFE}\]
Thay vào (1) suy ra \[\widehat {MBK} = 90^\circ - \left( {90^\circ - \widehat {AFE}} \right) = \widehat {AFE}\]
Mà \[\widehat {AFE} = \widehat {AMN}\] (vì là hai góc đồng vị) nên \[\widehat {MBK} = \widehat {BMK}\]hay \[\Delta MBK\]cân tại K
Suy ra MK = KB
Chứng minh tương tự ta được \[\Delta KCN\]cân tại K hay KC = KN
Vậy KM = KN = KB = KC hay M, N, C, B cùng thuộc một đường tròn đường kính MN
Suy ra \[\widehat {MBN} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn)
Vậy \[AM \bot BN\]
Lời giải
Xét phương trình \[{x^2} - 5x + 2 = 0\] có a = 1, b = -5, c =2
\[\Delta = {( - 5)^2} - 4.1.2 = 17 > 0\] nên phương trình có 2 nghiệm phân biệt
Theo định lí Viète, ta có:
\[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - b}}{a} = 5\\{x_1}.{x_2} = \frac{c}{a} = 2\end{array} \right.\]
\[B = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}.{x_2}}} = \frac{5}{2}\].
Vậy \[B = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{5}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.