Câu hỏi:

11/01/2026 50 Lưu

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 10\), \(AB = 6\) và \(AC = 8\); \(M\) là trung điểm của \(BC\) và \(AMND\) là hình vuông sao cho cạnh \(MN\) cắt cạnh AC tại điểm \(F\).

Media VietJack

a) Xác định tâm và bán kính đường tròn ngoai tiếp tam giác \(ABC\).

b) Chứng minh tứ giác \(ABCN\) nội tiếp được đường tròn.

c) Tính diện tích tứ giác \(AFND\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Vì tam giác \(ABC\) vuông tại \(A\) nên tam giác \(ABC\) nội tiếp đường tròn đường kính \(BC\).

Mà \(M\) là trung điểm của \(BC\) nên \(M\) tâm đường tròn ngoai tiếp tam giác \(ABC\) có bán kính \(R = \frac{{BC}}{2} = \frac{{10}}{2} = 5\).

b)  \(AMND\) là hình vuông nên \(MA = MN\).

Mà \(MA = MB = MC\) nên \(MN = MA = MB = MC\), do đó \(A,B,C,N\) cùng thuộc \(\left( M \right)\).

Vậy tứ giác \(ABCN\) nội tiếp được đường tròn.

c)  Tam giác \(ABC\) vuông tại \(A\) nên \(\tan \widehat {ACB} = \frac{{AB}}{{AC}} = \frac{6}{8} = \frac{3}{4}\).

Mà \(\widehat {MAC} = \widehat {MCA}\) (do tam giác \(MAC\) cân tại \(M\)) nên

\(\tan \widehat {MAF} = \frac{{MF}}{{MA}} = \tan \widehat {ACB}\) \( \Rightarrow \frac{{MF}}{5} = \frac{3}{4} \Rightarrow MF = \frac{{15}}{4}\).

Ta có \({S_{AMF}} = \frac{1}{2}AM \cdot MF = \frac{1}{2} \cdot 5 \cdot \frac{{15}}{4} = \frac{{75}}{8}\)

\({S_{AMND}} = A{M^2} = {5^2} = 25\).

\({S_{AFND}} = {S_{AMND}} - {S_{AMF}} = 25 - \frac{{75}}{8} = \frac{{125}}{8}\).

Vậy diện tích tứ giác \(AFND\) là \(\frac{{125}}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Không gian mẫu của phép gieo là:

\(\left( {1,1} \right);\left( {1,2} \right);\left( {1,3} \right)\); \(\left( {1,4} \right);\left( {2,1} \right);\left( {2,2} \right)\); \(\left( {2,3} \right);\left( {2,4} \right);\left( {3,1} \right)\); \(\left( {3,2} \right);\left( {3,3} \right);\left( {3,4} \right)\);      \(\left( {4,1} \right);\left( {4,2} \right)\); \(\left( {4,3} \right);\left( {4,4} \right)\).

Vậy không gian mẫu có tất cả \(16\) kết quả

Các kết quả thuận lợi cho biến cố \(A\) : "Tổng hai số xuất hiện của hai xúc xắc lớn hơn \(5\)” gồm
\(\left( {2,4} \right);\left( {4,2} \right);\left( {3,4} \right)\); \(\left( {4,3} \right);\left( {3,3} \right);\left( {4,4} \right)\) nên có tất cả \(6\)kết quả.
Vậy xác suất của biến cố \(A\) là \(P = \frac{6}{{16}} = \frac{3}{8}\).