Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 10\), \(AB = 6\) và \(AC = 8\); \(M\) là trung điểm của \(BC\) và \(AMND\) là hình vuông sao cho cạnh \(MN\) cắt cạnh AC tại điểm \(F\).

a) Xác định tâm và bán kính đường tròn ngoai tiếp tam giác \(ABC\).
b) Chứng minh tứ giác \(ABCN\) nội tiếp được đường tròn.
c) Tính diện tích tứ giác \(AFND\).
Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 10\), \(AB = 6\) và \(AC = 8\); \(M\) là trung điểm của \(BC\) và \(AMND\) là hình vuông sao cho cạnh \(MN\) cắt cạnh AC tại điểm \(F\).

a) Xác định tâm và bán kính đường tròn ngoai tiếp tam giác \(ABC\).
b) Chứng minh tứ giác \(ABCN\) nội tiếp được đường tròn.
c) Tính diện tích tứ giác \(AFND\).Quảng cáo
Trả lời:

a) Vì tam giác \(ABC\) vuông tại \(A\) nên tam giác \(ABC\) nội tiếp đường tròn đường kính \(BC\).
Mà \(M\) là trung điểm của \(BC\) nên \(M\) tâm đường tròn ngoai tiếp tam giác \(ABC\) có bán kính \(R = \frac{{BC}}{2} = \frac{{10}}{2} = 5\).
b) \(AMND\) là hình vuông nên \(MA = MN\).
Mà \(MA = MB = MC\) nên \(MN = MA = MB = MC\), do đó \(A,B,C,N\) cùng thuộc \(\left( M \right)\).
Vậy tứ giác \(ABCN\) nội tiếp được đường tròn.
c) Tam giác \(ABC\) vuông tại \(A\) nên \(\tan \widehat {ACB} = \frac{{AB}}{{AC}} = \frac{6}{8} = \frac{3}{4}\).
Mà \(\widehat {MAC} = \widehat {MCA}\) (do tam giác \(MAC\) cân tại \(M\)) nên
\(\tan \widehat {MAF} = \frac{{MF}}{{MA}} = \tan \widehat {ACB}\) \( \Rightarrow \frac{{MF}}{5} = \frac{3}{4} \Rightarrow MF = \frac{{15}}{4}\).
Ta có \({S_{AMF}} = \frac{1}{2}AM \cdot MF = \frac{1}{2} \cdot 5 \cdot \frac{{15}}{4} = \frac{{75}}{8}\)
\({S_{AMND}} = A{M^2} = {5^2} = 25\).
\({S_{AFND}} = {S_{AMND}} - {S_{AMF}} = 25 - \frac{{75}}{8} = \frac{{125}}{8}\).
Vậy diện tích tứ giác \(AFND\) là \(\frac{{125}}{8}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Bảng tần số ghép nhóm của mẫu số liệu là
|
Số trái chúc |
\(\left[ {4;6} \right)\) |
\(\left[ {6;8} \right)\) |
\(\left[ {8;10} \right)\) |
\(\left[ {10;12} \right)\) |
|
Tần số ghép nhóm |
\(2\) |
\(5\) |
\(9\) |
\(4\) |
b)Vẽ biểu đồ tần số ghép nhóm dạng cột mô tả số lượng trái chúc cho mỗi một kilogam

Lời giải
Không gian mẫu của phép gieo là:
\(\left( {1,1} \right);\left( {1,2} \right);\left( {1,3} \right)\); \(\left( {1,4} \right);\left( {2,1} \right);\left( {2,2} \right)\); \(\left( {2,3} \right);\left( {2,4} \right);\left( {3,1} \right)\); \(\left( {3,2} \right);\left( {3,3} \right);\left( {3,4} \right)\); \(\left( {4,1} \right);\left( {4,2} \right)\); \(\left( {4,3} \right);\left( {4,4} \right)\).
Vậy không gian mẫu có tất cả \(16\) kết quả
Các kết quả thuận lợi cho biến cố \(A\) : "Tổng hai số xuất hiện của hai xúc xắc lớn hơn \(5\)” gồm\(\left( {2,4} \right);\left( {4,2} \right);\left( {3,4} \right)\); \(\left( {4,3} \right);\left( {3,3} \right);\left( {4,4} \right)\) nên có tất cả \(6\)kết quả.
Vậy xác suất của biến cố \(A\) là \(P = \frac{6}{{16}} = \frac{3}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

