Quảng cáo
Trả lời:
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi chiều rộng của sân trường là \[x\,\left( {\rm{m}} \right)\]( Điều kiện: \[x > 0\])
Vì chiều dài của sân trường hình chữ nhật lớn hơn chiều rộng \[16\,{\rm{m}}\] nên chiều dài của sân trường là: \[x + 16\;\left( {\rm{m}} \right)\].
Vì hai lần chiều dài nhỏ hơn \[5\] lần chiều rộng \[100\,{\rm{m}}\] nên ta có phương trình:
\[5x - 2\left( {x + 16} \right) = 100\]
\[5x - 2x - 32 = 100\]
\[3x = 132\]
\[x = 44\,\left( {\rm{m}} \right)\].
Suy ra chiều dài của sân trường là: \[44 + 16 = 60\,\left( {\rm{m}} \right)\]
Vậy sân trường có chiều rộng là \[44\,{\rm{m}}\] và chiều dài là \[60\,{\rm{m}}\].Lời giải
Ta có \[\Delta = {\left( { - m} \right)^2} - 4.\;1.\;\left( { - 3} \right)\]\[ = {m^2} + 12\]
Do \[\Delta > 0\] với \[\forall \,\,m \in \mathbb{R}\] do đó phương trình đã cho luôn có hai nghiệm phân biệt \[{x_1}\],\[{x_2}\].
Theo định lý Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} = - 3\end{array} \right.\]
Vì \[{x_2}\] là nghiệm của phương trình đã cho nên \[x_2^2 - m{x_2} - 3 = 0\] hay \[x_2^2 = m{x_2} + 3\]
Khi đó \[H = \frac{{2\left( {{x_1} + {x_2}} \right) + 5}}{{m{x_2} + 3 + m{x_1} - {x_1}{x_2}}}\]\[ = \frac{{2\left( {{x_1} + {x_2}} \right) + 5}}{{m\left( {{x_1} + {x_2}} \right) + 3 - {x_1}{x_2}}}\]\[ = \frac{{2m + 5}}{{{m^2} + 6}}\]
Ta có \[H - 1 = \frac{{2m + 5}}{{{m^2} + 6}} - 1\]\[ = \frac{{2m + 5 - {m^2} - 6}}{{{m^2} + 6}}\]\[ = \frac{{ - {m^2} + 2m - 1}}{{{m^2} + 6}}\]\[ = \frac{{ - {{\left( {m - 1} \right)}^2}}}{{{m^2} + 6}}\]
Vì \[ - {\left( {m - 1} \right)^2} \le 0\], \[{m^2} + 6 > 0\] với \[\forall \,\,m \in \mathbb{R}\] nên \[\frac{{ - {{\left( {m - 1} \right)}^2}}}{{{m^2} + 6}} \le 0\] hay \[H - 1 \le 0\] do đó \[H \le 1\]
Dấu \['' = ''\] xảy ra khi và chỉ khi \[m = 1\].
Vậy \[m = 1\] thì \[H = \frac{{2\left( {{x_1} + {x_2}} \right) + 5}}{{x_2^2 + m{x_1} - {x_1}{x_2}}}\] đạt giá trị lớn nhất là \[1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.