Cho hình vuông ABCD tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là
hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH.
a) Chứng minh HD là tia phân giác của góc AHC.
b) Chứng minh diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD.
Cho hình vuông ABCD tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là
hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH.
a) Chứng minh HD là tia phân giác của góc AHC.
b) Chứng minh diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD.
Quảng cáo
Trả lời:

a) Ta có \(\widehat {ADC} = 90^\circ \)(ABCD là hình vuông)
\(\widehat {AHC} = 90^\circ \) (H là hình chiếu của C trên AE)
Xét tứ giác ADCH có: \(\widehat {ADC} + \widehat {AHC} = 180^\circ \)
Mà hai góc này ở vị trí đối nhau
\( \Rightarrow \) Tứ giác ADCH nội tiếp.
\( \Rightarrow \widehat {DAC} = \widehat {DHC} = 45^\circ \)(cùng chắn cung CD) mà \(\widehat {AHD} + \widehat {DHC} = 90^\circ \)\( \Rightarrow \)\(\widehat {AHD} = 45^\circ \)
\( \Rightarrow \) HD là tia phân giác của góc AHC.
b) Xét tứ giác OEHC có: \(\widehat {EOC} + \widehat {EHC} = 180^\circ \).
Mà hai góc này ở vị trí đối nhau
\( \Rightarrow \)Tứ giác OEHC nội tiếp.
\( \Rightarrow \widehat {AEO} = \widehat {ACH}\)(góc ngoài bằng góc đối trong) (1)
Tứ giác ADCH nội tiếp (cmt) \( \Rightarrow \widehat {ADF} = \widehat {ACH}\)(cùng chắn cung AH) (2)
Từ (1) và (2) suy ra \( \Rightarrow \widehat {AED} = \widehat {ADF}\)
Xét \(\Delta ADE\)và \(\Delta FAD\)có:\(\)\(\)
\( \Rightarrow \frac{{AF}}{{AD}} = \frac{{AD}}{{DE}} \Leftrightarrow AF.DE = A{D^2}\)
Ta có: \({S_{AEFD}} = \frac{1}{2}AF.DE = \frac{1}{2}A{D^2} = \frac{1}{2}{S_{ABCD}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có \(\widehat {BFC} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)
\(\widehat {BEC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
Xét tam giác ABC có: BE và CF là 2 đường cao cắt nhau tại H \( \Rightarrow \)H là trực tâm tam giác ABC \( \Rightarrow AH \bot BC\)tại D.
Ta có tứ giác BCEF nội tiếp (O) \( \Rightarrow \widehat {AFE} = \widehat {OCE}\)(góc ngoài bằng góc đối trong).
Xét tứ giác ACDF có:
\(\widehat {ADC} = 90^\circ \)(cmt)
\(\widehat {AFC} = 90^\circ \)(cmt)
\( \Rightarrow \)tứ giác ACDF nội tiếp \( \Rightarrow \widehat {BFD} = \widehat {OCE}\)(góc ngoài bằng góc đối trong).
Xét tam giác BEC vuông tại E có EO là trung tuyến
\( \Rightarrow EO = \frac{1}{2}BC = CO = BO\)(định lý đường trung tuyến của tam giác vuông)
\( \Rightarrow \widehat {OCE} = \widehat {OEC} \Rightarrow \widehat {COE} = 180^\circ - 2\widehat {OCE}\)
Ta có \[\left\{ \begin{array}{l}\widehat {AFE} = \widehat {OCE}\left( {cmt} \right)\\\widehat {BFD} = \widehat {OCE}\left( {cmt} \right)\end{array} \right.\]\( \Rightarrow \widehat {COE} = 180^\circ - \widehat {AFE} - \widehat {BFD} = \widehat {EFD}\)
Xét tứ giác ODFE có \[\widehat {COE} = \widehat {EFD}\left( {cmt} \right)\]
Mà hai góc ở vị trí góc ngoài và góc đối trong \( \Rightarrow \)tứ giác ODFE nội tiếp.
b) Xét tam giác AEH vuông tại E có EI là trung tuyến
\( \Rightarrow EI = \frac{1}{2}AH = AI = HI\)(định lý đường trung tuyến của tam giác vuông)
\( \Rightarrow \widehat {IAE} = \widehat {IEA}\), có \(\widehat {OCE} = \widehat {OEC}\left( {cmt} \right)\)và \(\widehat {IAE}\)phụ \(\widehat {OCE}\)\( \Rightarrow \widehat {IEA}\) phụ \(\widehat {OEC}\)\( \Rightarrow \widehat {OEI} = 90^\circ \)
Chứng minh tương tự ta có \(\widehat {OFI} = 90^\circ \).
Xét tứ giác OEIF có \[\widehat {OEI} + \widehat {OFI} = 180^\circ \]
Mà hai góc ở vị trí đối nhau \( \Rightarrow \)tứ giác OEIF nội tiếp.
Ta có tứ giác ODFE nội tiếp (cmt), tứ giác OEIF nội tiếp (cmt) \[ \Rightarrow \] 5 điểm O, D, F, I, E cùng thuộc đường tròn đường kính ID.
Xét \(\Delta IEK\)và \[\Delta IDE\]có:
\( \Rightarrow \frac{{IE}}{{ID}} = \frac{{IK}}{{IE}} \Leftrightarrow I{E^2} = ID.IK\left( 1 \right)\)
Xét \(\Delta IEM\)và \[\Delta ICE\]có:
\( \Rightarrow \frac{{IE}}{{IC}} = \frac{{IM}}{{IE}} \Leftrightarrow I{E^2} = IC.IM\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow IK.ID = IC.IM \Rightarrow \frac{{IK}}{{IM}} = \frac{{IC}}{{ID}}\)
Xét \(\Delta IMK\)và \[\Delta IDC\]có:
mà \(\widehat {IDC} = 90^\circ \Rightarrow \widehat {IMK} = 90^\circ \Rightarrow CI \bot KM\).
Lời giải
Theo đề ta có: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1\)
Đặt \(\frac{1}{x} = a\), \(\frac{1}{y} = b\), \(\frac{1}{z} = c\)\(\left( {a,b,c > 0} \right)\)\( \Rightarrow a + b + c = 1\)
Khi đó \[H = \frac{c}{{9{a^2} + 1}} + \frac{a}{{9{b^2} + 1}} + \frac{b}{{9{c^2} + 1}}\]
Ta có: \[\frac{c}{{9{a^2} + 1}} \le \frac{{c\left( {9{a^2} + 1} \right) - 9{a^2}c}}{{9{a^2} + 1}} = c - \frac{{9{a^2}c}}{{9{a^2} + 1}}\]
Vì \[9{a^2} + 1 \ge 6a \Rightarrow c - \frac{{9{a^2}c}}{{9{a^2} + 1}} \ge c - \frac{{9{a^2}c}}{{6a}} = c - \frac{3}{2}ac\]
Chứng minh tương tự ta có: \[\frac{a}{{9{b^2} + 1}} \ge a - \frac{3}{2}ba\]; \[\frac{b}{{9{c^2} + 1}} \ge b - \frac{3}{2}cb\]
\[ \Rightarrow H \ge a + b + c - \frac{3}{2}\left( {ab + bc + ca} \right)\]
Mà \[ab + bc + ca \le \frac{{{{\left( {a + b + c} \right)}^2}}}{3}\]
\[ \Rightarrow H \ge 1 - \frac{3}{2}.\frac{1}{3} = \frac{1}{2}\]
Vậy \[{H_{\min }} = \frac{1}{2}\]. Dấu bằng xảy ra khi và chỉ khi \[x = y = z = 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.