Câu hỏi:

25/01/2026 61 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {2;5} \right),B\left( {1;1} \right),C\left( {3;3} \right)\). Tìm tọa độ điểm \(E\) sao cho \(\overrightarrow {AE}  = 3\overrightarrow {AB}  - 2\overrightarrow {AC} \).

A. \(\left( {3; - 3} \right)\).                                       
B. \(\left( { - 3;3} \right)\).     
C. \(\left( { - 3; - 3} \right)\).                                     
D. \(\left( { - 2; - 3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {AB}  = \left( { - 1; - 4} \right),\overrightarrow {AC}  = \left( {1; - 2} \right)\).

Khi đó \(3\overrightarrow {AB}  - 2\overrightarrow {AC}  = \left( { - 5; - 8} \right)\).

Gọi \(E\left( {x;y} \right)\). Ta có \(\overrightarrow {AE}  = \left( {x - 2;y - 5} \right)\).

Vì \(\overrightarrow {AE}  = 3\overrightarrow {AB}  - 2\overrightarrow {AC} \) nên \(\left\{ \begin{array}{l}x - 2 =  - 5\\y - 5 =  - 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 3\end{array} \right. \Rightarrow E\left( { - 3; - 3} \right)\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(B\) là trọng tâm của tam giác \(ACD\) nên \(\left\{ \begin{array}{l}\frac{{1 - 1 + a}}{3} = - 2\\\frac{{1 - 5 + b}}{3} = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 6\\b = 13\end{array} \right. \Rightarrow D\left( { - 6;13} \right)\).

Vậy \(a + 2b = - 6 + 2 \cdot 13 = 20\).

Lời giải

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) biết A ( 2; -1) (ảnh 1)

Ta có \({S_{ABCD}} = 3{S_{ABD}} \Rightarrow {S_{BDC}} = 2{S_{ABD}}\)\( \Rightarrow \frac{{BC}}{{AD}} = 2\).

Gọi \(D\left( {x;y} \right)\). Khi đó \(\overrightarrow {AD} = \left( {x - 2;y + 1} \right),\overrightarrow {BC} = \left( { - 7; - 3} \right)\).

Lại có \(ABCD\) là hình thang nên \(\overrightarrow {AD} \)\(\overrightarrow {BC} \) cùng hướng.

Do đó \(\overrightarrow {BC} = 2\overrightarrow {AD} \)\( \Rightarrow \left\{ \begin{array}{l}2\left( {x - 2} \right) = - 7\\2\left( {y + 1} \right) = - 3\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}x = - \frac{3}{2}\\y = - \frac{5}{2}\end{array} \right.\)\( \Rightarrow x - y = - \frac{3}{2} - \left( { - \frac{5}{2}} \right) = 1\).

Câu 3

A. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 4\).                       
B. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  =  - 1\).                             
C. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  =  - 4\).                            
D. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  =  - 26\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Tọa độ của vectơ \(3\overrightarrow {AB} \) là \(\left( {6;12} \right)\).

Đúng
Sai

b) Vectơ \(\overrightarrow {BA} \) cùng hướng với vectơ \(\overrightarrow {BC} \).

Đúng
Sai

c) \(\overrightarrow {AC}  \cdot \overrightarrow {CB}  = 120\).

Đúng
Sai
d) Gọi \(D\) là điểm thỏa mãn \(30\overrightarrow {OD}  + 19\overrightarrow {DB}  - 3\overrightarrow {DC}  = \overrightarrow 0 \). Khi đó \(\left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = 45^\circ \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(A,B,C\) thẳng hàng.

Đúng
Sai

b) \(M\left( {3;1} \right)\) là trung điểm của \(BC\).

Đúng
Sai

c) \(G\left( {\frac{4}{3};\frac{5}{3}} \right)\) là trọng tâm của tam giác \(ABC\).

Đúng
Sai
d) \(\widehat {BAC} \approx 74,7^\circ \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP