Cho hàm số \(y = {x^2}\) có đồ thị \((P)\).
a) Vẽ \((P)\)
b) Bằng phép tính, tìm tọa độ các giao điểm của \((P)\) và đường thẳng \((d):y = - x + 2\).
Cho hàm số \(y = {x^2}\) có đồ thị \((P)\).
a) Vẽ \((P)\)
b) Bằng phép tính, tìm tọa độ các giao điểm của \((P)\) và đường thẳng \((d):y = - x + 2\).
Quảng cáo
Trả lời:
a) Vẽ \((P)\)
Vẽ đồ thị hàm số \((P):y = {x^2}\).
Tập xác định: \(D = \mathbb{R}\)
\(a = 1 > 0\), hàm số đồng biến nếu \(x > 0\), hàm số nghịch biến nếu \(x < 0\)
Bảng giá trị
|
\(x\) |
\( - 2\) |
\( - 1\) |
\(0\) |
\(1\) |
\(2\) |
|
\(y = {x^2}\) |
\(4\) |
\(1\) |
\(0\) |
\(1\) |
\(4\) |
Đồ thị hàm số \(y = {x^2}\) là đường cong Parabol đi qua điểm \(O\), nhận \(Oy\) làm trục đối xứng, bề lõm hướng lên trên.

b) Bằng phép tính, tìm tọa độ các giao điểm của \((P)\) và đường thẳng \((d):y = - x + 2\).
Xét phương trình hoành độ giao điểm giữa \((P)\) và đường thẳng \((d)\) ta được:
\(\begin{array}{l}{x^2} = - x + 2\\{x^2} + x - 2 = 0\end{array}\)
Ta có: \(a + b + c = 1 + 1 - 2 = 0\) nên phương trình có 2 nghiệm phân biệt \(x = 1\) và \(x = \frac{c}{a} = - 2\)
Với \(x = 1\) ta có \(y = {1^2} = 1\).
Với \(x = - 2\) ta có \(y = {( - 2)^2} = 4\).
Vậy đồ thị \((P)\) cắt \((d)\) tại hai điểm \((1;1),( - 2;4)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \({x^2} - 2\left( {m + 2} \right)x - m - 7 = 0\)
Ta có \(\Delta ' = {\left( {m + 2} \right)^2} - \left( {m - 7} \right) = {m^2} + 5m + 11 = {\left( {m + \frac{5}{2}} \right)^2} + \frac{{19}}{4} > 0,\forall m \Rightarrow \Delta ' > 0\) với mọi m
Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
b) \({x^2} - 4{m^2}x - 4m - 2 = 0\)
Ta có \(\Delta ' = 4{m^4} + 4m + 2 = 2(2{m^4} + 2m + 1)\)
mà \(2{m^4} + 2m + 1 = 2\left( {{m^4} - {m^2} + \frac{1}{4}} \right) + 2\left( {{m^2} + m + \frac{1}{4}} \right) = 2{\left( {{m^2} - \frac{1}{2}} \right)^2} + 2{\left( {m + \frac{1}{2}} \right)^2} \ge 0\)
Dấu “=” xảy ra khi \({m^2} - \frac{1}{2} = 0\)và \(m + \frac{1}{2} = 0\) suy ra vô lý \( \Rightarrow \Delta ' > 0\forall m.\)
Vậy phương trình luôn có hai nghiệm phân biệt.
Lời giải
a) Ta có
\[\begin{array}{l}{x^2} + \left( {m - 5} \right)x - 3\left( {m - 2} \right) = 0\\{x^2} - 3x + \left( {m - 2} \right)x - 3\left( {m - 2} \right) = 0\end{array}\]
\[\begin{array}{l}x\left( {x - 3} \right) + \left( {m - 2} \right)\left( {x - 3} \right) = 0\\\left( {x - 3} \right)\left( {x + m - 2} \right) = 0\end{array}\]
\[x = 3\] và \[x = 2 - m\]
Vậy phương trình trên luôn có nghiệm \[x = 3\] với mọi \[m \in \mathbb{R}\]
b) Phương trình có nghiệm kép khi và chỉ khi hai nghiệm của phương trình trùng nhau
Theo câu a) suy ra \[2 - m = 3 \Rightarrow m = - 1\]
Ta cũng có thể xét \[\Delta = {\left( {m - 5} \right)^2} + 4.3\left( {m - 2} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\]
Phương trình có nghiệm kép khi
\[\begin{array}{l}\Delta = 0\\{\left( {m + 1} \right)^2} = 0\\m = - 1\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.