Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = x + 2\)
a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một hệ trục tọa độ \[Oxy\].
b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.
Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = x + 2\)
a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một hệ trục tọa độ \[Oxy\].
b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.
Quảng cáo
Trả lời:
a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một hệ trục tọa độ \[Oxy\].
+ Xét parabol \(\left( P \right):y = {x^2}\)
Hệ số \[a = 1 > 0\] nên hàm số đồng biến khi \[x > 0\], nghịch biến khi \[x < 0\] và có bề lõm hướng lên trên
Bảng giá trị:
|
\[x\] |
-2 |
-1 |
0 |
1 |
2 |
|
\[y = {x^2}\] |
4 |
1 |
0 |
1 |
4 |
\[ \Rightarrow \]Parabol \(\left( P \right)\)là đường cong có đỉnh \(O\left( {0;0} \right)\), qua các điểm \(\left( {1;1} \right),\left( { - 1;1} \right),\left( {2;4} \right),\left( { - 2;4} \right)\)
+ Xét đường thẳng \(\left( d \right):y = x + 2\)
Bảng giá trị:
|
\[x\] |
0 |
-2 |
|
\[y = x + 2\] |
2 |
0 |
\[ \Rightarrow \]Đường thẳng \(\left( d \right)\)cắt trục \[Ox\]tại điểm \(\left( { - 2;0} \right)\), cắt trục \[Oy\] tại điểm \(\left( {0;2} \right)\)
Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một hệ trục tọa độ \[Oxy\].

b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.
Phương trình hoành độ giao điểm của parabol \(\left( P \right)\)và đường thẳng \(\left( d \right)\):
\[\begin{array}{l}{x^2} = x + 2\\{x^2} - x - 2 = 0\end{array}\]
\(a - b + c = 0\)nên phương trình có hai nghiệm \({x_1} = - 1,{x_2} = - \frac{c}{a} = 2\)
+ Với \({x_1} = - 1 \to {y_1} = - 1 + 2 = 1\)
+ Với \({x_2} = 2 \to {y_2} = 2 + 2 = 4\)
Vậy parabol \(\left( P \right)\)và đường thẳng \(\left( d \right)\)cắt nhau tại hai điểm \(\left( { - 1;1} \right),\left( {2;4} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \({x^2} - 2\left( {m + 2} \right)x - m - 7 = 0\)
Ta có \(\Delta ' = {\left( {m + 2} \right)^2} - \left( {m - 7} \right) = {m^2} + 5m + 11 = {\left( {m + \frac{5}{2}} \right)^2} + \frac{{19}}{4} > 0,\forall m \Rightarrow \Delta ' > 0\) với mọi m
Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
b) \({x^2} - 4{m^2}x - 4m - 2 = 0\)
Ta có \(\Delta ' = 4{m^4} + 4m + 2 = 2(2{m^4} + 2m + 1)\)
mà \(2{m^4} + 2m + 1 = 2\left( {{m^4} - {m^2} + \frac{1}{4}} \right) + 2\left( {{m^2} + m + \frac{1}{4}} \right) = 2{\left( {{m^2} - \frac{1}{2}} \right)^2} + 2{\left( {m + \frac{1}{2}} \right)^2} \ge 0\)
Dấu “=” xảy ra khi \({m^2} - \frac{1}{2} = 0\)và \(m + \frac{1}{2} = 0\) suy ra vô lý \( \Rightarrow \Delta ' > 0\forall m.\)
Vậy phương trình luôn có hai nghiệm phân biệt.
Lời giải
a) Ta có
\[\begin{array}{l}{x^2} + \left( {m - 5} \right)x - 3\left( {m - 2} \right) = 0\\{x^2} - 3x + \left( {m - 2} \right)x - 3\left( {m - 2} \right) = 0\end{array}\]
\[\begin{array}{l}x\left( {x - 3} \right) + \left( {m - 2} \right)\left( {x - 3} \right) = 0\\\left( {x - 3} \right)\left( {x + m - 2} \right) = 0\end{array}\]
\[x = 3\] và \[x = 2 - m\]
Vậy phương trình trên luôn có nghiệm \[x = 3\] với mọi \[m \in \mathbb{R}\]
b) Phương trình có nghiệm kép khi và chỉ khi hai nghiệm của phương trình trùng nhau
Theo câu a) suy ra \[2 - m = 3 \Rightarrow m = - 1\]
Ta cũng có thể xét \[\Delta = {\left( {m - 5} \right)^2} + 4.3\left( {m - 2} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\]
Phương trình có nghiệm kép khi
\[\begin{array}{l}\Delta = 0\\{\left( {m + 1} \right)^2} = 0\\m = - 1\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.