Cho a, b, c là độ dài ba cạnh của tam giác, chứng minh phương trình sau vô nghiệm:
\({b^2}{x^2} - \left( {{b^2} + {c^2} - {a^2}} \right)x + {c^2} = 0.\)
Cho a, b, c là độ dài ba cạnh của tam giác, chứng minh phương trình sau vô nghiệm:
\({b^2}{x^2} - \left( {{b^2} + {c^2} - {a^2}} \right)x + {c^2} = 0.\)
Quảng cáo
Trả lời:
\(\Delta ' = {\left( {{b^2} + {c^2} - {a^2}} \right)^2} - 4{b^2}{c^2}\)
\( = \left( {b + c + a} \right)\left( {b + c - a} \right)\left( {b + a - c} \right) < 0.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có 6 giờ 40 phút \( = 6\frac{2}{3}\) giờ.
Gọi thời gian công nhân thứ nhất làm một mình xong công việc là \(x\) (giờ, \(x > 6\frac{2}{3}\) ).
Thời gian công nhân thứ hai làm một mình xong việc là \(x + 3\) (giờ).
Mỗi giờ công nhân thứ nhất làm được \(\frac{1}{x}\) (công việc).
Mỗi giờ công nhân thứ hai làm được \(\frac{1}{{x + 3}}\) (công việc).
Theo đầu bài, hai công nhân cùng làm thì hoàn thành công việc trong \(6\frac{2}{3}\) giờ. Nên mỗi giờ họ cùng làm được \(1:6\frac{2}{3} = \frac{3}{{20}}\) (công việc). Ta có phương trình:
\(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{3}{{20}} \Leftrightarrow 3{x^2} - 31x - 60 = 0\).
Ta có \(\Delta = {31^2} - 4.3.( - 60) = 1681 > 0\) nên phương trình có nghiệm là \({x_1} = - \frac{5}{3}(\)loại\();{x_2} = 12\) (nhận).
Vậy thời gian công nhân thứ nhất làm xong công việc là 12 giờ. Thời gian công nhân thứ hai làm một mình xong công việc là 15 giờ.
Lời giải
a) Gọi \(y = ax + b\) là phương
trình đường thẳng \(AB\).
Ta có \(\left\{ \begin{array}{l}a.\left( { - 1} \right) + b = 1\\a.3 + b = 9\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)
suy ra phương trình đường thẳng \(AB\)\(\left( d \right):y = 2x + 3\).
Đường thẳng \(AB\) cắt trục \(Oy\) tại điểm \(I\left( {0;3} \right)\).

Diện tích tam giác \(OAB\) là: \({S_{OAB}} = {S_{OAI}} + {S_{OBI}} = \frac{1}{2}AH.OI + \frac{1}{2}BK.OI\).
Ta có \(AH = 1;BK = 3,OI = 3\).
Suy ra \({S_{OAB}} = 6\) (đvdt).
b) Giả sử \(C\left( {c;{c^2}} \right)\) thuộc cung nhỏ \(\left( P \right)\) với \( - 1 < c < 3\).
Diện tích tam giác:\({S_{ABC}} = {S_{ABB'A'}} - {S_{ACC'A'}} - {S_{BCC'B'}}\).
Các tứ giác \(ABB'A',AA'C'C,CBB'C'\) đều là hình thang vuông nên ta có:
\({S_{ABC}} = \frac{{1 + 9}}{2}.4 - \frac{{1 + {c^2}}}{2}.\left( {c + 1} \right) - \frac{{9 + {c^2}}}{2}.\left( {3 - c} \right) = 8 - 2{\left( {c - 1} \right)^2} \le 8\).
Vậy diện tích tam giác \(ABC\) lớn nhất bằng \(8\) (đvdt) khi \(C\left( {1;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.