Câu hỏi:

02/02/2026 67 Lưu

Hai đội cùng đào một con mương. Nếu mỗi đội làm một mình cả con mương thì thời gian tổng cộng hai đội phải làm là 25 giờ. Nếu hai đội cùng làm chung thì công việc hoàn thành trong 6 giờ. Tính xem mỗi đội làm một mình xong cả con mương trong bao lâu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[x\] (giờ) là thời gian đội thứ nhất đào một mình xong con mương thì \[25 - x\] (giờ) là thời gian đội thứ hai đào một mình xong con mương.

Điều kiện \[0 < x < 25\].

Trong 1 giờ đội thứ nhất đào được \[\frac{1}{x}\] con mương, đội thứ hai đào được \[\frac{1}{{25 - x}}\] con mương và cả hai đội đào chung được \[\frac{1}{6}\] con mương. Ta có phương trình:

\[\frac{1}{x} + \frac{1}{{25 - x}} = \frac{1}{6} \Leftrightarrow 6\left( {25 - x} \right) + 6x = x\left( {25 - x} \right) \Leftrightarrow {x^2} - 25x + 150 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 6 giờ 40 phút \( = 6\frac{2}{3}\) giờ.

Gọi thời gian công nhân thứ nhất làm một mình xong công việc là \(x\) (giờ, \(x > 6\frac{2}{3}\) ).

Thời gian công nhân thứ hai làm một mình xong việc là \(x + 3\) (giờ).

Mỗi giờ công nhân thứ nhất làm được \(\frac{1}{x}\) (công việc).

Mỗi giờ công nhân thứ hai làm được \(\frac{1}{{x + 3}}\) (công việc).

Theo đầu bài, hai công nhân cùng làm thì hoàn thành công việc trong \(6\frac{2}{3}\) giờ. Nên mỗi giờ họ cùng làm được \(1:6\frac{2}{3} = \frac{3}{{20}}\) (công việc). Ta có phương trình:

\(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{3}{{20}} \Leftrightarrow 3{x^2} - 31x - 60 = 0\).

Ta có \(\Delta  = {31^2} - 4.3.( - 60) = 1681 > 0\) nên phương trình có nghiệm là \({x_1} =  - \frac{5}{3}(\)loại\();{x_2} = 12\) (nhận).

Vậy thời gian công nhân thứ nhất làm xong công việc là 12 giờ. Thời gian công nhân thứ hai làm một mình xong công việc là 15 giờ.

Lời giải

a) Gọi \(y = ax + b\) là phương

trình đường thẳng \(AB\).

Ta có \(\left\{ \begin{array}{l}a.\left( { - 1} \right) + b = 1\\a.3 + b = 9\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)

suy ra phương trình đường thẳng \(AB\)\(\left( d \right):y = 2x + 3\).

Đường thẳng \(AB\) cắt trục \(Oy\) tại điểm \(I\left( {0;3} \right)\).

Trong mặt phẳng tọa độ \(Oxy\) cho Parabol \(\left( (ảnh 1)

Diện tích tam giác \(OAB\) là: \({S_{OAB}} = {S_{OAI}} + {S_{OBI}} = \frac{1}{2}AH.OI + \frac{1}{2}BK.OI\).

Ta có \(AH = 1;BK = 3,OI = 3\).

Suy ra \({S_{OAB}} = 6\) (đvdt).

b) Giả sử \(C\left( {c;{c^2}} \right)\) thuộc cung nhỏ \(\left( P \right)\) với \( - 1 < c < 3\).

Diện tích tam giác:\({S_{ABC}} = {S_{ABB'A'}} - {S_{ACC'A'}} - {S_{BCC'B'}}\).

Các tứ giác \(ABB'A',AA'C'C,CBB'C'\) đều là hình thang vuông nên ta có:

\({S_{ABC}} = \frac{{1 + 9}}{2}.4 - \frac{{1 + {c^2}}}{2}.\left( {c + 1} \right) - \frac{{9 + {c^2}}}{2}.\left( {3 - c} \right) = 8 - 2{\left( {c - 1} \right)^2} \le 8\).

Vậy diện tích tam giác \(ABC\) lớn nhất bằng \(8\) (đvdt) khi \(C\left( {1;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP