Câu hỏi:

28/01/2026 8 Lưu

Một thửa ruộng hình chữ nhật có diện tích là \(100\;{{\rm{m}}^2}\). Tính độ dài các canh của thửa ruộng. Biết rằng nếu tăng chiều rộng của thửa ruộng lên \(2\;{\rm{m}}\) và giảm chiều dài thửa ruộng đi \(5\;{\rm{m}}\) thì diện tích thửa ruộng tăng thêm \(5\;{{\rm{m}}^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi chiều dài hình chữ nhật là \(x\,(\;{\rm{m}},x > 0)\), thì chiều rộng hình chữ nhật là \(\frac{{100}}{x}(\;{\rm{m}})\).

Theo đầu bài, nếu tăng chiều rộng thửa ruộng lên\(2\;{\rm{m}}\)và giảm chiều dài thửa ruộng đi \(5\;{\rm{m}}\) thì diện tích thửa ruộng tăng thêm \(5\;{{\rm{m}}^2}\), ta có phương trình:

\((x - 5) \cdot \left( {\frac{{100}}{x} + 2} \right) = 100 + 5 \Leftrightarrow 2{x^2} - 15x - 500 = 0\)

Ta có \(\Delta  = {15^2} - 4 \cdot 2 \cdot ( - 500) = 4225 > 0\), nên phương trình có nghiệm \({x_1} =  - \frac{{25}}{2}(\)loại\();{x_2} = 20\) (nhận).

Vậy chiều dài mảnh đất hình chữ nhật là \(20\;{\rm{m}}\), chiều rộng là \(5\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \({x^2} - 2\left( {m + 2} \right)x - m - 7 = 0\)

Ta có \(\Delta ' = {\left( {m + 2} \right)^2} - \left( {m - 7} \right) = {m^2} + 5m + 11 = {\left( {m + \frac{5}{2}} \right)^2} + \frac{{19}}{4} > 0,\forall m \Rightarrow \Delta ' > 0\) với mọi m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.

b) \({x^2} - 4{m^2}x - 4m - 2 = 0\)

Ta có \(\Delta ' = 4{m^4} + 4m + 2 = 2(2{m^4} + 2m + 1)\)

mà \(2{m^4} + 2m + 1 = 2\left( {{m^4} - {m^2} + \frac{1}{4}} \right) + 2\left( {{m^2} + m + \frac{1}{4}} \right) = 2{\left( {{m^2} - \frac{1}{2}} \right)^2} + 2{\left( {m + \frac{1}{2}} \right)^2} \ge 0\)

Dấu “=” xảy ra khi \({m^2} - \frac{1}{2} = 0\)và \(m + \frac{1}{2} = 0\) suy ra vô lý \( \Rightarrow \Delta ' > 0\forall m.\)

Vậy phương trình luôn có hai nghiệm phân biệt.

Lời giải

a) Ta có

\[\begin{array}{l}{x^2} + \left( {m - 5} \right)x - 3\left( {m - 2} \right) = 0\\{x^2} - 3x + \left( {m - 2} \right)x - 3\left( {m - 2} \right) = 0\end{array}\]

\[\begin{array}{l}x\left( {x - 3} \right) + \left( {m - 2} \right)\left( {x - 3} \right) = 0\\\left( {x - 3} \right)\left( {x + m - 2} \right) = 0\end{array}\]

\[x = 3\] và \[x = 2 - m\]

Vậy phương trình trên luôn có nghiệm \[x = 3\] với mọi \[m \in \mathbb{R}\]

b) Phương trình có nghiệm kép khi và chỉ khi hai nghiệm của phương trình trùng nhau

Theo câu a) suy ra \[2 - m = 3 \Rightarrow m =  - 1\]

Ta cũng có thể xét \[\Delta  = {\left( {m - 5} \right)^2} + 4.3\left( {m - 2} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\]

Phương trình có nghiệm kép khi

\[\begin{array}{l}\Delta  = 0\\{\left( {m + 1} \right)^2} = 0\\m =  - 1\end{array}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP