Câu hỏi:

28/01/2026 8 Lưu

Cho tam giác \(ABC\) vuông cân có \(AB = AC = 12\;{\rm{cm}}\). Điểm \(M\) chạy trên \(AB\). Tứ giác \(MNCP\) là hình bình hành có đỉnh \(N\) thuộc cạnh \(AC\) (như hình bên dưới). Hỏi khi \(M\)cách\(A\) bao nhiêu thì diện tích của hình bình hành bằng \(32\;{\rm{c}}{{\rm{m}}^2}\).

Gọi chiều dài hình chữ nhật là \(x\,(\;{\rm{m}}, (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \(MA = x\), ta có \(MB = NC = 12 - x\,(\;{\rm{cm}})\).

\({S_{MPCN}} = {S_{ABC}} - {S_{BMP}} - {S_{AMN}} = 72 - \frac{1}{2}{x^2} - \frac{1}{2}{(12 - x)^2} =  - {x^2} + 12x\)

Ta có phương trình \( - {x^2} + 12x = 32 \Leftrightarrow {x^2} - 12x - 32 = 0.\)

Ta có \(\Delta  = {12^2} - 4 \cdot 2 \cdot (32) = 16 > 0\), nên phương trình có nghiệm \({x_1} = 8\) (nhận); \({x_2} = 4\) (nhận).

Kết luận khi \(M\) cách\(A\,\)một khoảng bằng \(8\;{\rm{cm}}\)hoặc \(4\;{\rm{cm}}\)thì diện tích hình bình hành bằng \(32\;{\rm{c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \({x^2} - 2\left( {m + 2} \right)x - m - 7 = 0\)

Ta có \(\Delta ' = {\left( {m + 2} \right)^2} - \left( {m - 7} \right) = {m^2} + 5m + 11 = {\left( {m + \frac{5}{2}} \right)^2} + \frac{{19}}{4} > 0,\forall m \Rightarrow \Delta ' > 0\) với mọi m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.

b) \({x^2} - 4{m^2}x - 4m - 2 = 0\)

Ta có \(\Delta ' = 4{m^4} + 4m + 2 = 2(2{m^4} + 2m + 1)\)

mà \(2{m^4} + 2m + 1 = 2\left( {{m^4} - {m^2} + \frac{1}{4}} \right) + 2\left( {{m^2} + m + \frac{1}{4}} \right) = 2{\left( {{m^2} - \frac{1}{2}} \right)^2} + 2{\left( {m + \frac{1}{2}} \right)^2} \ge 0\)

Dấu “=” xảy ra khi \({m^2} - \frac{1}{2} = 0\)và \(m + \frac{1}{2} = 0\) suy ra vô lý \( \Rightarrow \Delta ' > 0\forall m.\)

Vậy phương trình luôn có hai nghiệm phân biệt.

Lời giải

a) Ta có

\[\begin{array}{l}{x^2} + \left( {m - 5} \right)x - 3\left( {m - 2} \right) = 0\\{x^2} - 3x + \left( {m - 2} \right)x - 3\left( {m - 2} \right) = 0\end{array}\]

\[\begin{array}{l}x\left( {x - 3} \right) + \left( {m - 2} \right)\left( {x - 3} \right) = 0\\\left( {x - 3} \right)\left( {x + m - 2} \right) = 0\end{array}\]

\[x = 3\] và \[x = 2 - m\]

Vậy phương trình trên luôn có nghiệm \[x = 3\] với mọi \[m \in \mathbb{R}\]

b) Phương trình có nghiệm kép khi và chỉ khi hai nghiệm của phương trình trùng nhau

Theo câu a) suy ra \[2 - m = 3 \Rightarrow m =  - 1\]

Ta cũng có thể xét \[\Delta  = {\left( {m - 5} \right)^2} + 4.3\left( {m - 2} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\]

Phương trình có nghiệm kép khi

\[\begin{array}{l}\Delta  = 0\\{\left( {m + 1} \right)^2} = 0\\m =  - 1\end{array}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP