Cho tam giác \(ABC\) vuông cân có \(AB = AC = 12\;{\rm{cm}}\). Điểm \(M\) chạy trên \(AB\). Tứ giác \(MNCP\) là hình bình hành có đỉnh \(N\) thuộc cạnh \(AC\) (như hình bên dưới). Hỏi khi \(M\)cách\(A\) bao nhiêu thì diện tích của hình bình hành bằng \(32\;{\rm{c}}{{\rm{m}}^2}\).

Cho tam giác \(ABC\) vuông cân có \(AB = AC = 12\;{\rm{cm}}\). Điểm \(M\) chạy trên \(AB\). Tứ giác \(MNCP\) là hình bình hành có đỉnh \(N\) thuộc cạnh \(AC\) (như hình bên dưới). Hỏi khi \(M\)cách\(A\) bao nhiêu thì diện tích của hình bình hành bằng \(32\;{\rm{c}}{{\rm{m}}^2}\).

Quảng cáo
Trả lời:
Đặt \(MA = x\), ta có \(MB = NC = 12 - x\,(\;{\rm{cm}})\).
\({S_{MPCN}} = {S_{ABC}} - {S_{BMP}} - {S_{AMN}} = 72 - \frac{1}{2}{x^2} - \frac{1}{2}{(12 - x)^2} = - {x^2} + 12x\)
Ta có phương trình \( - {x^2} + 12x = 32 \Leftrightarrow {x^2} - 12x - 32 = 0.\)
Ta có \(\Delta = {12^2} - 4 \cdot 2 \cdot (32) = 16 > 0\), nên phương trình có nghiệm \({x_1} = 8\) (nhận); \({x_2} = 4\) (nhận).
Kết luận khi \(M\) cách\(A\,\)một khoảng bằng \(8\;{\rm{cm}}\)hoặc \(4\;{\rm{cm}}\)thì diện tích hình bình hành bằng \(32\;{\rm{c}}{{\rm{m}}^2}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \({x^2} - 2\left( {m + 2} \right)x - m - 7 = 0\)
Ta có \(\Delta ' = {\left( {m + 2} \right)^2} - \left( {m - 7} \right) = {m^2} + 5m + 11 = {\left( {m + \frac{5}{2}} \right)^2} + \frac{{19}}{4} > 0,\forall m \Rightarrow \Delta ' > 0\) với mọi m
Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
b) \({x^2} - 4{m^2}x - 4m - 2 = 0\)
Ta có \(\Delta ' = 4{m^4} + 4m + 2 = 2(2{m^4} + 2m + 1)\)
mà \(2{m^4} + 2m + 1 = 2\left( {{m^4} - {m^2} + \frac{1}{4}} \right) + 2\left( {{m^2} + m + \frac{1}{4}} \right) = 2{\left( {{m^2} - \frac{1}{2}} \right)^2} + 2{\left( {m + \frac{1}{2}} \right)^2} \ge 0\)
Dấu “=” xảy ra khi \({m^2} - \frac{1}{2} = 0\)và \(m + \frac{1}{2} = 0\) suy ra vô lý \( \Rightarrow \Delta ' > 0\forall m.\)
Vậy phương trình luôn có hai nghiệm phân biệt.
Lời giải
a) Ta có
\[\begin{array}{l}{x^2} + \left( {m - 5} \right)x - 3\left( {m - 2} \right) = 0\\{x^2} - 3x + \left( {m - 2} \right)x - 3\left( {m - 2} \right) = 0\end{array}\]
\[\begin{array}{l}x\left( {x - 3} \right) + \left( {m - 2} \right)\left( {x - 3} \right) = 0\\\left( {x - 3} \right)\left( {x + m - 2} \right) = 0\end{array}\]
\[x = 3\] và \[x = 2 - m\]
Vậy phương trình trên luôn có nghiệm \[x = 3\] với mọi \[m \in \mathbb{R}\]
b) Phương trình có nghiệm kép khi và chỉ khi hai nghiệm của phương trình trùng nhau
Theo câu a) suy ra \[2 - m = 3 \Rightarrow m = - 1\]
Ta cũng có thể xét \[\Delta = {\left( {m - 5} \right)^2} + 4.3\left( {m - 2} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\]
Phương trình có nghiệm kép khi
\[\begin{array}{l}\Delta = 0\\{\left( {m + 1} \right)^2} = 0\\m = - 1\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.