Câu hỏi:

02/02/2026 53 Lưu

Một mảnh đất hình chữ nhật có độ dài đường chéo là \(13\;{\rm{m}}\) và chiều dài lớn hơn chiều rộng \(7\;{\rm{m}}\). Tính chiều dài và chiều rộng của mảnh đất đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi chiều rộng mảnh đất là \(x\,(\;{\rm{m}},0 < x < 13)\), thì chiều dài mảnh đất là \(x + 7(\;{\rm{m}})\).

Theo đầu bài, hình chữ nhật có độ dài đường chéo là \(13\;{\rm{m}}\), áp dụng định lí Pi-ta-go ta có phương trình

\({x^2} + {(x + 7)^2} = {13^2} \Leftrightarrow {x^2} + 7x - 60 = 0.\)

\(\Delta  = {7^2} - 4 \cdot ( - 60) = 289 > 0\) nên phương trình có nghiệm \({x_1} =  - 12\) (loại); \({x_2} = 5\) (nhận).

Vậy chiều rộng của mảnh đất hình chữ nhật là \(5\;{\rm{m}}\) và chiều dài của mảnh đất là \(12\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 6 giờ 40 phút \( = 6\frac{2}{3}\) giờ.

Gọi thời gian công nhân thứ nhất làm một mình xong công việc là \(x\) (giờ, \(x > 6\frac{2}{3}\) ).

Thời gian công nhân thứ hai làm một mình xong việc là \(x + 3\) (giờ).

Mỗi giờ công nhân thứ nhất làm được \(\frac{1}{x}\) (công việc).

Mỗi giờ công nhân thứ hai làm được \(\frac{1}{{x + 3}}\) (công việc).

Theo đầu bài, hai công nhân cùng làm thì hoàn thành công việc trong \(6\frac{2}{3}\) giờ. Nên mỗi giờ họ cùng làm được \(1:6\frac{2}{3} = \frac{3}{{20}}\) (công việc). Ta có phương trình:

\(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{3}{{20}} \Leftrightarrow 3{x^2} - 31x - 60 = 0\).

Ta có \(\Delta  = {31^2} - 4.3.( - 60) = 1681 > 0\) nên phương trình có nghiệm là \({x_1} =  - \frac{5}{3}(\)loại\();{x_2} = 12\) (nhận).

Vậy thời gian công nhân thứ nhất làm xong công việc là 12 giờ. Thời gian công nhân thứ hai làm một mình xong công việc là 15 giờ.

Lời giải

a) Gọi \(y = ax + b\) là phương

trình đường thẳng \(AB\).

Ta có \(\left\{ \begin{array}{l}a.\left( { - 1} \right) + b = 1\\a.3 + b = 9\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)

suy ra phương trình đường thẳng \(AB\)\(\left( d \right):y = 2x + 3\).

Đường thẳng \(AB\) cắt trục \(Oy\) tại điểm \(I\left( {0;3} \right)\).

Trong mặt phẳng tọa độ \(Oxy\) cho Parabol \(\left( (ảnh 1)

Diện tích tam giác \(OAB\) là: \({S_{OAB}} = {S_{OAI}} + {S_{OBI}} = \frac{1}{2}AH.OI + \frac{1}{2}BK.OI\).

Ta có \(AH = 1;BK = 3,OI = 3\).

Suy ra \({S_{OAB}} = 6\) (đvdt).

b) Giả sử \(C\left( {c;{c^2}} \right)\) thuộc cung nhỏ \(\left( P \right)\) với \( - 1 < c < 3\).

Diện tích tam giác:\({S_{ABC}} = {S_{ABB'A'}} - {S_{ACC'A'}} - {S_{BCC'B'}}\).

Các tứ giác \(ABB'A',AA'C'C,CBB'C'\) đều là hình thang vuông nên ta có:

\({S_{ABC}} = \frac{{1 + 9}}{2}.4 - \frac{{1 + {c^2}}}{2}.\left( {c + 1} \right) - \frac{{9 + {c^2}}}{2}.\left( {3 - c} \right) = 8 - 2{\left( {c - 1} \right)^2} \le 8\).

Vậy diện tích tam giác \(ABC\) lớn nhất bằng \(8\) (đvdt) khi \(C\left( {1;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP