Câu hỏi:

29/01/2026 6 Lưu

Người ta vẽ bảng quy hoạch của một khu định cư được bao xung quanh bởi ba con đường thẳng lập thành một tam giác với độ dài các cạnh là \(900\;{\rm{m}},1200\;{\rm{m}}\) và 1500 m (Hình vẽ).

 Người ta vẽ bảng quy hoạch củ (ảnh 1)

a) Tính chu vi và diện tích của phần đất giới hạn bởi tam giác trên.

b) Họ muốn xây dựng một khách sạn bên trong khu dân cư cách đều cả ba con đường đó. Hỏi khi đó khách sạn sẽ cách mỗi con đường một khoảng là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Người ta vẽ bảng quy hoạch củ (ảnh 2)

a) Xét tam giác ABC , ta có: \({\rm{B}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2}\left( {{{1500}^2} = {{900}^2} + {{1200}^2}} \right)\)

Theo định lí Pythagore đảo, tam giác ABC vuông tại A .

Phần đất giới hạn là tam giác vuông, gọi P là chu vi, ta có: \(P = AB + BC + AC = 900 + 1500 + 1200 = 3600(m)\)

Và diện tích \({{\rm{S}}_{{\rm{ABC}}}} = \frac{1}{2} \cdot {\rm{AB}} \cdot {\rm{AC}} = \frac{1}{2} \cdot 900 \cdot 1200 = 540000\left( {\;{{\rm{m}}^2}} \right)\)

b) Gọi O là nơi xây dựng khách sạn và khoảng cách từ khách sạn đến ba con đường là \({\rm{OH}} = {\rm{OI}} = {\rm{OK}} = {\rm{R}}\).

Ta có: \({{\rm{S}}_{{\rm{ABC}}}} = {{\rm{S}}_{{\rm{AOB}}}} + {{\rm{S}}_{{\rm{AOC}}}}\) (trong đó \({{\rm{S}}_{{\rm{AOB}}}},{{\rm{S}}_{{\rm{AOC}}}},{{\rm{S}}_{{\rm{BOC}}}}\) lần lượt là diện tích các tam giác AOB, AOCvà BOC)

\({{\rm{S}}_{{\rm{ABC}}}} = \frac{1}{2}{\rm{R}} \cdot {\rm{AB}} + \frac{1}{2}{\rm{R}} \cdot {\rm{AC}} + \frac{1}{2}R \cdot BC\)

\({{\rm{S}}_{{\rm{ABC}}}} = \frac{1}{2}{\rm{R}}({\rm{AB}} + {\rm{AC}} + {\rm{BC}})\)

\({{\rm{S}}_{{\rm{ABC}}}} = \frac{1}{2}{\rm{R}} \cdot {\rm{P }}\) (\({{\rm{S}}_{{\rm{ABC}}}}\)là diện tích và \(P\) là chu vi)\( \Rightarrow {\rm{R}} = \frac{{2 \cdot \;{{\rm{S}}_{{\rm{ABC}}}}}}{{\rm{P}}} = \frac{{2.540000}}{{3600}} = 300(\;{\rm{m}})\)

Khi đó khách sạn sẽ cách mỗi con đường 300 (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một mảnh vườn có dạng tam giác đều ABC cạnh 12 cm . Người ta muốn trồng hoa ở phần đất bên trong đường tròn nội tiếp tam giác ABC . Tính diện tích phần đất trồng hoa đó. (ảnh 1)

Gọi I là tâm của đường tròn nội tiếp tam giác đều ABC .

Kẻ đường cao AH , khi đó tâm I của đường tròn nội tiếp (giao điểm của ba đường phân giác cũng là trọng tâm).

Ta có AH là đường trung tuyến\( \Rightarrow {\rm{H}}\)là trung điểm của BC hay \({\rm{BH}} = {\rm{CH}} = \frac{{{\rm{BC}}}}{2} = \frac{{12}}{2} = 6\) (m).

Xét tam giác BHI vuông tại H . Có \({\rm{BH}} = 6\;{\rm{cm}}\) và IBH^=30°

Theo định lí về hệ thức lượng trong tam giác vuông, ta có: IH=BHtanIBH=6tan30°=23( m)

Vậy bán kính của phần đất trồng hoa là \({\rm{r}} = 2\sqrt 3 (\;{\rm{m}})\)

Do đó diện tích phần đất trồng hoa là \({\rm{S}} = \pi \cdot {(2\sqrt 3 )^2} = 12\pi \left( {\;{{\rm{m}}^2}} \right)\)

Lời giải

Vì khung ảnh hình tròn tiếp xúc với các cạnh của tam giác đều nên ta có đường tròn nội tiếp tam giác đều. Ta có có bán kính đường tròn nội tiếp tam giác đều là \(R = \frac{{a\sqrt 3 }}{6}\) với \(a\) là độ dài cạnh tam giác đều.

Nên \(40 = \frac{{a\sqrt 3 }}{6} \Leftrightarrow a\sqrt 3 = 240 \Leftrightarrow a \approx 138,6(\;{\rm{cm}})\). Vậy chiều dài cạnh khung gỗ khoảng \(138,6\;{\rm{cm}}\).