Câu hỏi:

03/02/2026 489 Lưu

Ba đường tròn tiếp xúc với nhau từng đôi một và tiếp xúc với các cạnh của tam giác như hình bên. Nếu mỗi đường tròn có bán kính là 3, thì chu vi của tam giác sẽ bằng bao nhiêu?

Ba đường tròn tiếp xúc với nhau từng đôi một và tiếp xúc với các cạnh của tam giác như hình bên. Nếu mỗi đường tròn có bán kính là 3, thì chu vi của tam giác sẽ bằng bao nhiêu? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ tâm \[P\] và \[Q\] vẽ \[PQ\] và \[CQ\] vuông góc với cạnh \[AD\] của tam giác

Các tam giác \[APB\] và \[DQC\] là nửa tam giác đều với \[PB = QC = 3\]

\[ \Rightarrow AB = CD = 3\sqrt 3 ;BC = PQ = 6 \Rightarrow AD = 6 + 6\sqrt 3 \]

Vậy chu vi tam giác là: \[18 + 18\sqrt 3 \]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(AI = \frac{{2AO}}{3} = \frac{{2R}}{3} \Rightarrow OI = R - \frac{{2R}}{3} = \frac{R}{3}\)

\(\Delta OCI\) vuông tại \(O\), ta có:

\(CI = \sqrt {O{C^2} + O{I^2}}  = \sqrt {{R^2} + {{\left( {\frac{R}{3}} \right)}^2}}  = \frac{{R\sqrt {10} }}{3}\)

\(\Delta CED\) nội tiếp đường tròn \(O\) có cạnh \(CD\) là đường kính \( \Rightarrow \Delta CED\) vuông tại \(E\)

Hai tam giác vuông \(OCI\) và \(CED\) có \(\widehat C:chung\)

\( \Rightarrow \Delta COI \sim \Delta CED \Rightarrow \frac{{CO}}{{CE}} = \frac{{CI}}{{CD}} \Rightarrow CE = \frac{{CO.CD}}{{CI}}\)

\( = \frac{{R.2R}}{{R\frac{{\sqrt {10} }}{3}}} = \frac{{6R}}{{\sqrt {10} }} = \frac{{3R\sqrt {10} }}{5}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP