17 bài tập Toán 9 Kết nối tri thức Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp có đáp án
4.6 0 lượt thi 17 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
3 bài tập Biểu đồ tần số tương đối ghép nhóm dạng đoạn thẳng (có lời giải)
6 bài tập Biểu đồ tần số tương đối ghép nhóm dạng cột (có lời giải)
9 bài tập Tần số ghép nhóm, tần số tương đối ghép nhóm (có lời giải)
4 bài tập Biểu đồ tần số tương đối (có lời giải)
Danh sách câu hỏi:
Lời giải
\[\begin{array}{l}a = R\sqrt 2 = 3\sqrt 2 \left( {cm} \right)\\S = {a^2} = {\left( {3\sqrt 2 } \right)^2} = 18\left( {c{m^2}} \right)\end{array}\]
Lời giải
Từ tâm \[P\] và \[Q\] vẽ \[PQ\] và \[CQ\] vuông góc với cạnh \[AD\] của tam giác
Các tam giác \[APB\] và \[DQC\] là nửa tam giác đều với \[PB = QC = 3\]
\[ \Rightarrow AB = CD = 3\sqrt 3 ;BC = PQ = 6 \Rightarrow AD = 6 + 6\sqrt 3 \]
Vậy chu vi tam giác là: \[18 + 18\sqrt 3 \]
Lời giải
![Cho \[\Delta ABC\] vuông tại \[A\], có \[AB = 9cm,AC = 12cm\]. Gọi \[I\] là tâm đường tròn nội tiếp, \[G\] là trọng tâm của tam giác. Tính độ dài \[IG\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/2-1769682960.png)
Gọi \[D,E,F\] là tiếp điểm của đường tròn \[\left( I \right)\] với \[AB\]
\[\Delta ABC\] vuông tại \[A\], theo định lý Pytago ta có: \[BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{9^2} + {{12}^2}} = 15\left( {cm} \right)\]
Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \[AD = AF;BD = BE;CE = CF\]
Do đó \[2AD + 2BE + 2CE = AB + BC + CA = 9 + 12 + 15 = 36\]
\[ \Leftrightarrow 2AD + 2BC = 36 \Leftrightarrow AD = 3\left( {cm} \right) \Rightarrow BD = 6\left( {cm} \right);DI = 3\left( {cm} \right)\]
Gọi \[N = BI \cap AC\], ta có: \[\frac{{BI}}{{BN}} = \frac{{BD}}{{BA}} = \frac{6}{9} = \frac{2}{3} = \frac{{BG}}{{BM}} \Rightarrow \left\{ \begin{array}{l}IG//NM\\IG = \frac{2}{3}NM\end{array} \right.\]
Ta có \[\diamondsuit IDAF\] là hình vuông, có: \[\frac{{BD}}{{BA}} = \frac{{DI}}{{AN}} = \frac{2}{3} \Rightarrow AN = 4,5\left( {cm} \right)\]
Mà \[M\] là trung điểm của \[AC\] nên: \[NM = AM - AN = 6 - 4,5 = 1,5\left( {cm} \right) \Rightarrow IG = 1\left( {cm} \right)\]
Lời giải
Ta có \(AI = \frac{{2AO}}{3} = \frac{{2R}}{3} \Rightarrow OI = R - \frac{{2R}}{3} = \frac{R}{3}\)
\(\Delta OCI\) vuông tại \(O\), ta có:
\(CI = \sqrt {O{C^2} + O{I^2}} = \sqrt {{R^2} + {{\left( {\frac{R}{3}} \right)}^2}} = \frac{{R\sqrt {10} }}{3}\)
\(\Delta CED\) nội tiếp đường tròn \(O\) có cạnh \(CD\) là đường kính \( \Rightarrow \Delta CED\) vuông tại \(E\)
Hai tam giác vuông \(OCI\) và \(CED\) có \(\widehat C:chung\)
\( \Rightarrow \Delta COI \sim \Delta CED \Rightarrow \frac{{CO}}{{CE}} = \frac{{CI}}{{CD}} \Rightarrow CE = \frac{{CO.CD}}{{CI}}\)
\( = \frac{{R.2R}}{{R\frac{{\sqrt {10} }}{3}}} = \frac{{6R}}{{\sqrt {10} }} = \frac{{3R\sqrt {10} }}{5}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





