Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như hình vẽ.
a) Tính bán kính R của đường tròn (O).
b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC .
Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như hình vẽ.
a) Tính bán kính R của đường tròn (O).
b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC .
Quảng cáo
Trả lời:

a) Kẻ đường cao AH của tam giác đều ABC có cạnh 3 cm ta có \({\rm{AH}} = \frac{{3\sqrt 3 }}{4}(\;{\rm{cm}})\).
Vì đều nên trực tâm O cùng trùng với trọng tâm, khi đó \({\rm{OA}} = \frac{2}{3} \cdot {\rm{AH}} = \frac{2}{3} \cdot \frac{{3\sqrt 3 }}{4} = \sqrt 3 \) (cm)
Vậy bán kính R của đường tròn \(({\rm{O}})\) là:\({\rm{OA}} = \sqrt 3 (\;{\rm{cm}})\)
b) Gọi \({{\rm{S}}_{{\rm{ABC}}}}\) là diện tích tam giác đều ABC cạnh 3 cm , ta có: \({{\rm{S}}_{{\rm{ABC}}}} = \frac{{{3^2} \cdot \sqrt 3 }}{4} = \frac{{9\sqrt 3 }}{4}\left( {\;{\rm{c}}{{\rm{m}}^2}} \right)\)
Gọi S là diện tích hình tròn \(({\rm{O}})\), ta có:\({\rm{S}} = \pi \cdot {(\sqrt 3 )^2} = 3\pi \left( {\;{\rm{c}}{{\rm{m}}^2}} \right)\)
Do đó diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC là: \({{\rm{S}}_{{\rm{vp}}}} = \frac{1}{3}\left( {3\pi - \frac{{9\sqrt 3 }}{4}} \right) \approx 1,8\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ tâm \[P\] và \[Q\] vẽ \[PQ\] và \[CQ\] vuông góc với cạnh \[AD\] của tam giác
Các tam giác \[APB\] và \[DQC\] là nửa tam giác đều với \[PB = QC = 3\]
\[ \Rightarrow AB = CD = 3\sqrt 3 ;BC = PQ = 6 \Rightarrow AD = 6 + 6\sqrt 3 \]
Vậy chu vi tam giác là: \[18 + 18\sqrt 3 \]
Lời giải
Ta có \(AI = \frac{{2AO}}{3} = \frac{{2R}}{3} \Rightarrow OI = R - \frac{{2R}}{3} = \frac{R}{3}\)
\(\Delta OCI\) vuông tại \(O\), ta có:
\(CI = \sqrt {O{C^2} + O{I^2}} = \sqrt {{R^2} + {{\left( {\frac{R}{3}} \right)}^2}} = \frac{{R\sqrt {10} }}{3}\)
\(\Delta CED\) nội tiếp đường tròn \(O\) có cạnh \(CD\) là đường kính \( \Rightarrow \Delta CED\) vuông tại \(E\)
Hai tam giác vuông \(OCI\) và \(CED\) có \(\widehat C:chung\)
\( \Rightarrow \Delta COI \sim \Delta CED \Rightarrow \frac{{CO}}{{CE}} = \frac{{CI}}{{CD}} \Rightarrow CE = \frac{{CO.CD}}{{CI}}\)
\( = \frac{{R.2R}}{{R\frac{{\sqrt {10} }}{3}}} = \frac{{6R}}{{\sqrt {10} }} = \frac{{3R\sqrt {10} }}{5}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

